Chứng minh rằng với mọi số nguyên thì:
a,n+2 chia hết cho n-1
b,3n-5 chia hết cho n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
Ta có:\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)=6n^2+31n+5-\left(6n^2+7n-5\right)\)
\(=38n+10\)
\(2\left(19n+5\right)⋮2\left(đpcm\right)\)
Ta có: n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) = 2n2−3n−2n2−2n2n2−3n−2n2−2n
= −5n−5n
Vì −5⋮5−5⋮5 => -5n ⋮⋮ 5
=> n(2n−3)−2n(n+1)n(2n−3)−2n(n+1) ⋮⋮ 5 với mọi n ∈∈ Z
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
suy ra n-1+3 chia hết cho n-1
mà n-1 chia hết cho n-1
suy ra 3 chia hết cho n-1
vậy n-1 là ước của 3
lập bảng:
suy n thuộc 2;0;4;-2
3n-5 chia hết cho n-2
mà n-2 chia hết cho n-2
suy ra 3(n-2) chia hết cho n-2
suy ra 3n-6 chia hết cho n-2
ta có (3n-5)-(3n-6) chia hết cho n-2
suy ra 3n-5-3n+6 chia hết cho n-2
suy ra -5+6 chia hết cho n-2
suy ra 1 chia hết cho n-2
vậy n-2 là ước của 1
lập bảng:
suy ra n thuộc 3 và 1
tớ giải tỉ mỉ đó mong bạn hiểu