giải phương trình sau
(x^2+7x)^2 - 2(x^2+7x)-24=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
24 phút = \(\dfrac{24}{60} = \dfrac{2}{5}\) giờ
Gọi thời gian dự định đi từ A đến B là x(giờ) ; x > 0
Suy ra quãng đường AB là 36x(km)
Khi vận tốc sau khi giảm là 36 -6 = 30(km/h)
Vì giảm vận tốc nên thời gian đi hết AB là x + \(\dfrac{2}{5}\)(giờ)
Ta có phương trình:
\(36x = 30(x + \dfrac{2}{5})\\ \Leftrightarrow x = 2\)
Vậy quãng đường AB dài 36.2 = 72(km)
Đặt t =x^2 (t>=0)
Pt trở thành t^2-7t-18=0
Giải pt bậc 2 được t =9 ( nhận) và t=-2(loại)
--> x^2=9--> x= +-3
a: 7x+35=0
=>7x=-35
=>x=-5
b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
=>8-x-8(x-7)=1
=>8-x-8x+56=1
=>-9x+64=1
=>-9x=-63
hay x=7(loại)
a, \(7x=-35\Leftrightarrow x=-5\)
b, đk : x khác 7
\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)
vậy pt vô nghiệm
2, thiếu đề
(x+1)(x+2)(x+3)(x+4)=24
(x+1)(x+4)(x+2)(x+3)=24
(x\(^2\)+5x+4)(x2 +5x+6)=24
Đặt x2+5x+5=t
\(\Rightarrow\)(t+1)(t-1)=24
\(\Rightarrow\) t2 -1=24
\(\Rightarrow\) t2-25=0
\(\Rightarrow\) (t-5)(t+5)=0
\(\Rightarrow\) (x2+5x)(x2+5x+10)=0
\(\Rightarrow\) x(x+5)(x+5)2=0
\(\Rightarrow\) x(x+5)3=0
\(\Rightarrow\) x=0 hoặc (x+5)3=0
Vậy x=0 hoặc x= -5
(x^2+3x+2)(x^2+7X+12)=24
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
đặt \(x^2+5x+5=a\)=> ta có phương trình \(\Leftrightarrow\left(a-1\right)\left(a+1\right)=24\)
\(\Leftrightarrow a^2-1=24\)\(\Leftrightarrow a^2=25\Leftrightarrow a=\orbr{\begin{cases}5\\-5\end{cases}}\)
+)\(x^2+5x+5=5\)\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x=\orbr{\begin{cases}5\\0\end{cases}}\)
+) \(x^2+5x+5=-5\)\(\Leftrightarrow x^2+5x+10=0\)\(\Rightarrowđenta=5^2-4.10=-15< 0\Rightarrow ptvonghiem\)
vậy \(x=\orbr{\begin{cases}0\\5\end{cases}}\)
( x^2 + 3x + 2 )( x^2 + 7x + 12 ) = 24
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)=24\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)=24\)
Đặt x2 + 5x + 5 = a = ta có : \(\Leftrightarrow\left(a-1\right)\left(a+1\right)=24\)
\(\Leftrightarrow a^2-1=24\Leftrightarrow a^2=25\Leftrightarrow a=\orbr{\begin{cases}5\\-5\end{cases}}\)
+)\(x^2+5x+5=5\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)
\(\Leftrightarrow x=\orbr{\begin{cases}5\\0\end{cases}}\)
+)\(x^2+5x+5=-5\Leftrightarrow x^2+5x+10=0\)
\(\Rightarrowđenta=5^2-4.10=-15< 0\Rightarrow ptvonghiem\)
\(Vay.x=\orbr{\begin{cases}5\\0\end{cases}}\)
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)+\left(3x^2+6x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)+3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2+3x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[2x\left(x+1\right)+\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)\left(2x+1\right)=0\)
.......................................................................................
\(x^3-8x^2-8x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)-8x\left(x+1\right)=0\)
......................................................................................
(x2 + 7x)2 - 2(x2 + 7x) - 24 = 0
<=> (x2 + 7x)(x2 + 7x - 2) - 24 = 0 (1)
Đặt t = x2 + 7x - 1 = \(=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)
(1) trở thành (t + 1)(t - 1) - 24 = 0
<=> t2 - 1 - 24 = 0
<=> t2 - 25 = 0
<=> t2 = 25
<=> t = 5 hoặc t = -5
+) t =\(\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\) = 5
\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{73}{4}\)
\(\Leftrightarrow x=\frac{-7+\sqrt{73}}{2};x=\frac{-7-\sqrt{73}}{2}\)
+) t = \(\left(x+\frac{7}{2}\right)^2-\frac{53}{4}=-5\)
\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{33}{4}\)
\(\Leftrightarrow x=\frac{-7+\sqrt{33}}{2};x=\frac{-7-\sqrt{33}}{2}\)
Vậy ...