Tìm x thuộc Z biết x2+7-x=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x ( x + 6 ) = 0 ⇔ x = 0 x + 6 = 0 ⇔ x = 0 x = − 6
Vậy x = 0 hoặc x = - 6
b) ( x − 3 ) . ( y + 7 ) = 0 ⇔ x − 3 = 0 y + 7 = 0 ⇔ x = 3 y = − 7
Vậy x = 3 hoặc x = -7
c) ( x − 2 ) ( x 2 + 2 ) = 0 ⇔ x − 2 = 0 x 2 + 2 = 0 ⇔ x = 2 x 2 = − 2 ( L )
Vậy x = 2
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\\ \Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\\ \Leftrightarrow6x-42=7y-42\\ \Leftrightarrow6x=7y\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có;
\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{-4}{1}=-4\)
\(\dfrac{x}{7}=-4\Rightarrow x=-4.7\Rightarrow x=-28\\ \dfrac{y}{6}=-4\Rightarrow y=-4.6\Rightarrow y=-24\)
Sửa lại đề nha
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}\)
Mà x+z=7+y
Suy ra x+z-y=7
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)
Suy ra;
\(\frac{x}{3}=1;x=3.1=3\)
\(\frac{y}{6}=1;y=6.1=6\)
\(\frac{z}{10}=1;z=10.1=10\)
Vậy x=3;y=6;z=10
ủng hộ đầu xuân năm mới tròn 770 nha
1a) \(\frac{x-3}{x+7}=\frac{-5}{-6}\)
=> \(\frac{x-3}{x+7}=\frac{5}{6}\)
=> (x - 3).6 = 5.(x + 7)
=> 6x - 18 = 5x + 35
=> 6x - 5x = 35 + 18
=> x = 53
b) \(\frac{x-7}{x+3}=\frac{4}{3}\)
=> (x - 7). 3 = (x + 3). 4
=> 3x - 21 = 4x + 12
=> 3x - 4x = 12 + 21
=> -x = 33
=> x = -33
c) \(\frac{x-10}{6}=-\frac{5}{18}\)
=> (x - 10) . 18 = -5 . 6
=> 18x - 180 = -30
=> 18x = -30 + 180
=> 18x = 150
=> x = 150 : 18 = 25/3
d) \(\frac{x-2}{4}=\frac{25}{x-2}\)
=> (x - 2)(x - 2) = 25 . 4
=> (x - 2)2 = 100
=> (x - 2)2 = 102
=> \(\orbr{\begin{cases}x-2=10\\x-2=-10\end{cases}}\)
=> \(\orbr{\begin{cases}x=12\\x=-8\end{cases}}\)
e) \(\frac{7}{x}=\frac{x}{28}\)
=> 7 . 28 = x . x
=> 196 = x2
=> x2 = 142
=> \(\orbr{\begin{cases}x=14\\x=-14\end{cases}}\)
f) \(\frac{40+x}{77-x}=\frac{6}{7}\)
=> (40 + x) . 7 = (77 - x).6
=> 280 + 7x = 462 - 6x
=> 280 - 462 = -6x + 7x
=> -182 = x
=> x = -182
Ta có :
\(\frac{x-7}{y-6}=\frac{7}{6}\) \(\Rightarrow\) \(\frac{x-7}{7}=\frac{y-6}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-7}{7}=\frac{y-6}{6}=\frac{x-7-y+6}{7-6}=\frac{-4-1}{1}=-5\)
Do đó :
\(\frac{x-7}{7}=-5\Rightarrow x=\left(-5\right).7+7=-28\)
\(\frac{y-6}{6}=-5\Rightarrow y=\left(-5\right).6+6=-24\)
Vậy \(a=-28\) và \(b=-24\)
Ta có : � − 7 � − 6 = 7 6 y−6 x−7 = 6 7 ⇒ ⇒ � − 7 7 = � − 6 6 7 x−7 = 6 y−6 Áp dụng tính chất dãy tỉ số bằng nhau ta có : � − 7 7 = � − 6 6 = � − 7 − � + 6 7 − 6 = − 4 − 1 1 = − 5 7 x−7 = 6 y−6 = 7−6 x−7−y+6 = 1 −4−1 =−5 Do đó : � − 7 7 = − 5 ⇒ � = ( − 5 ) . 7 + 7 = − 28 7 x−7 =−5⇒x=(−5).7+7=−28 � − 6 6 = − 5 ⇒ � = ( − 5 ) . 6 + 6 = − 24 6 y−6 =−5⇒y=(−5).6+6=−24 Vậy � = − 28 a=−28 và � = − 24 b=−24
a: \(\dfrac{4}{5}-\dfrac{5}{6}< =\dfrac{x}{30}< =\dfrac{1}{3}-\dfrac{3}{10}\)
=>\(\dfrac{24-25}{30}< =\dfrac{x}{30}< =\dfrac{10-9}{30}\)
=>\(\dfrac{-1}{30}< =\dfrac{x}{30}< =\dfrac{1}{30}\)
=>-1<=x<=1
mà x nguyên
nên \(x\in\left\{-1;0;1\right\}\)
b: \(\dfrac{a}{7}+\dfrac{1}{14}=\dfrac{-1}{b}\)
=>\(\dfrac{2a+1}{14}=\dfrac{-1}{b}\)
=>\(\left(2a+1\right)\cdot b=-14\)
mà 2a+1 lẻ (do a là số nguyên)
nên \(\left(2a+1\right)\cdot b=1\cdot\left(-14\right)=\left(-1\right)\cdot14=7\cdot\left(-2\right)=\left(-7\right)\cdot2\)
=>\(\left(2a+1;b\right)\in\left\{\left(1;-14\right);\left(-1;14\right);\left(7;-2\right);\left(-7;2\right)\right\}\)
=>\(\left(a;b\right)\in\left\{\left(0;-14\right);\left(-1;14\right);\left(3;-2\right);\left(-4;2\right)\right\}\)