K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

N = 1 - 2 + 22 - 23 + ...+ 22016

\(\Rightarrow\)2N = 2 - 22 + 23 - 24 + ... + 22017

\(\Rightarrow\) N + 2N = (1 - 2 + 22 - 23 + ...+ 22016) + (2 - 22 + 23 - 24 + ... + 22017)

= 1 + 22017

\(\Rightarrow N=\frac{1+2^{2017}}{3}\)

23 tháng 1 2017

thanks bạn

3 tháng 9 2023

\(A=2^1+2^2+2^3+...+2^{2016}\)

\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)

\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)

\(\Rightarrow dpcm\)

2 tháng 5 2019

a, 2.(x – 5)+7 = 77

<=> 2.(x – 5) = 70 <=> x – 5 = 35 <=> x = 40

b,  x - 1 3 - 3 5 : 3 4 + 2 . 2 3 = 14

<=> x - 1 3 - 3 + 2 4 = 14

<=>  x - 1 3 = 14 + 3 - 16 = 1

<=> x – 1 = 1 <=> x = 2

c,  1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1

Đặt: A = 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 => 2A =  2 + 2 2 + 2 3 + . . . + 2 2017

=> 2A – A = ( 2 + 2 2 + 2 3 + . . . + 2 2017 ) – ( 1 + 2 + 2 2 + 2 3 + . . . + 2 2016 )

=> A =  2 2017 - 1

Ta có:  1 + 2 + 2 2 + 2 3 + . . . + 2 2016 = 2 x - 1 - 1 =>  2 2017 - 1 =  2 x - 1 - 1 => x = 2018

d,  5 2 x - 3 - 2 . 5 2 = 5 2 . 3

<=>  5 2 x - 3 = 5 2 . 3 + 5 2 . 2

<=>  5 2 x - 3 = 5 2 . ( 3 + 2 )

<=>  5 2 x - 3 = 5 3

<=> 2x – 3 = 3 => x = 3

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)

20 tháng 2 2022

\(\dfrac{2}{3}\)

20 tháng 2 2022

=\(\left(\dfrac{5}{17}+\dfrac{12}{17}\right)+\left(\dfrac{1}{22}-\dfrac{23}{22}\right)+\dfrac{2}{3}\)

=\(\dfrac{17}{17}-\dfrac{22}{22}+\dfrac{2}{3}\)

=\(1-1+\dfrac{2}{3}\)

=0+\(\dfrac{2}{3}\)

=\(\dfrac{2}{3}\)

`#3107.101107`

Đặt $A = 1 + 2 + 2^2 + 2^3 + ... + 2^{50}$

$2A = 2 + 2^2 + 2^3 + ... + 2^{51}$

$2A - A = (2 + 2^2 + 2^3 + ... + 2^{51}) - (1 + 2 + 2^2 + ... + 2^{50})$

$A = 2 + 2^2 + 2^3 + ... + 2^{51] - 1 - 2 - 2^2 - ... - 2^{50}$

$A = 2^{51} - 1$

Vậy, `A =` $2^{51} - 1.$

6 tháng 10 2023

\(S_1=1+2+2^2+2^3+..+2^{63}\\ \Rightarrow2S_1=2+2^2+2^3+2^4+...+2^{64}\\ \Rightarrow S_1-2S_1=1-2^{64}\\ \Rightarrow-S_1=1-2^{64}\\ \Rightarrow S_1=2^{64}-1.\)

6 tháng 10 2023

- Ta có: S1 = 1 + 2 + 22 + 23 + … + 263 = 1 + 2(1 + 2 + 22 + 23 + … + 262) (1)

= 1 + 2(S1 - 263) = 1 + 2S1 - 264 S1 = 264 - 1

H2.right