Ghi phương pháp giải rõ ràng hộ mình luôn nha:
Tìm n thuộc N biết: 3n + 7 chia hết cho 4 - n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì quá nhiều nên mk làm sơ sơ thôi
a) 15 chia hết cho n+1
=> n+1 thuộc Ư(15)={-15;-14;...14;15}
=> n thuộc { -16;-15;...;13;14}
b) 3n+5 chia hết cho n+1
=> 3n+3+2=3(n+1)+2 chia hết cho n+1
Do 3(n+1) chia hết cho n+1 => 2 chia hết cho 1 ( đến đây làm tương tự câu a)
c) n+7 chia hết cho n+1
=> (n+1)+6 chia hết cho n+1
=> 6 chia hết cho n+1 ( cũng làm tương tự)
d) 4n+7 chia hêt cho n-2
=> (4n-8)+15 chia hết cho n-2
=> 4(n-2) + 15 chia hết cho n-2
=> n-2 thuộc Ư(15)={-15;-14;...;14;15}
=> n thuộc {-13;-14;...;16;17}
e) 5n+8 chia hết cho n-3
=> (5n-15)+23 chia hết cho n-3
=> 5(n-3)+23 chia hết cho n-3 ( đến đây thì giống câu trên nhé)
f) 6n+8 chia hết cho 3n+1
=> 2(3n+1)+6 chia hết cho 3n+1
=> 3n+1 thuộc Ư(6) ( đến đây bạn tự làm giống n~ câu trên nhé
a) Vì 15 chia hết cho n + 1
=> n + 1 thuộc ước của 15
n + 1 thuộc { 1 ; 3 ; 5 ; 15 }
=> n thuộc { 0 ; 2 ; 4 ; 14 }
a, n2 + 2n + 4 chia hết cho n+1
=> n(n+1)+n+4 chia hết cho n+1
=> n(n+1)+n+1+3 chia hết cho n+1
=> (n+1).(n+1)+3 chia hết cho n+1
Vì (n+1)(n+1) chia hết cho n+1
=> 3 chia hết cho n+1
=> n+1 thuộc Ư(3)
=> n+1 thuộc {1; -1; -3; 3}
Mà n thuộc N
=> n thuộc {0; 2}
b, 2n2 + 10n + 20 chia hết cho 2n+3
n(2n+3)+7n+20 chia hết cho 2n+3
Vì n(2n+3) chia hết cho 2n+3
=> 7n+20 chia hết cho 2n+3
=> 14n+40 chia hết cho 2n+3
=> 14n+21+19 chia hết cho 2n+3
=> 7.(2n+3)+19 chia hết cho 2n+3
Vì 7.(2n+3) chia hết cho 2n+3
=> 19 chia hết cho 2n+3
=> 2n+3 thuộc Ư(19)
=> 2n+3 thuộc {1; -1; 19; -19}
=> 2n thuộc {-2; -4; 16; -22}
Mà n thuộc N
=> n = 8
Ta có :
\(n^2+9n+9=n.\left(n+9\right)+9=n.\left(n-4\right)+13n+9\) chia hết cho n - 4
\(\Leftrightarrow13n+9=13n-52+61\) chia hết cho n - 4
\(\Leftrightarrow61\) chia hết cho n - 4
\(\Leftrightarrow n-4\inƯ\left(61\right)\)
\(\Leftrightarrow n-4\in\left\{1;61\right\}\)
\(\Leftrightarrow n\in\left\{5;65\right\}\)