Cho x2+y2+z2=9
Tìm GTLN của P=2xy+2yz+7zx
Mọi người giúp mình nhé. Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Học tốt!
`2(x^2+y^2)+z^2=-2xy+2yz-4x-4`
`<=>2x^2+2y^2+z^2+2xy-2yz+4x+4=0`
`<=>(x^2+2xy+y^2)+(y^2-2yz+z^2)+(x^2+4x+4)=0`
`<=>(x+y)^2+(y-z)^2+(x+2)^2=0`
Vì `VT>=0`
Nên dấu "=" xảy ra khi `x+y=0,y-z=0,x+2=0`
`<=>x=-y,y=z,x=-2`
`<=>x=-2,y=z=-x=2`
Vậy `(x,y,z)=(-2,2,2)`
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
1 : 8x2+4xy-2ax -ay=4x(2x+y)-a(2x+y)=(2x+y)(4x-a)
2,3 tương tự
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
Ta có : \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng vào bài toán có :
\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
Áp dụng BĐT Svacxo ta có :
\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\), \(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\), \(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)
Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)
P/s : Dấu "=" không chắc lắm :))
Ta có: P = 2xy + 2yz + 7zx
\(\Leftrightarrow\)2P = 4xy + 4y
Cho x2+y2+z2=9
Tìm GTLN của P=2xy+2yz+7zx
\(\Leftrightarrow\)2P = 4xy + 4yz + 14zx
\(\Leftrightarrow\)2P - 72 = - 8(x2 + y2 + z2) + 4xy + 4yz + 14zx
= ( - x2 + 4xy - 4y2) + ( - z2 + 4yz - 4y2) + ( - 7x2 + 14zx - 7z2)
= - (x - 2y)2 - (z - 2y)2 - 7(x - z)2 \(\le\)0
\(\Rightarrow P\le36\)
Vậy GTLN là 36 đạt được khi: x = z = - 2, y = - 1 hoặc x = z = 2, y = 1