K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2017

\(3x^2+10xy+8y^2=96\)

\(\Leftrightarrow3x^2+6xy+4xy+8y^2=96\)

\(\Leftrightarrow3x\left(x+2y\right)+4y\left(x+2y\right)=96\)

\(\Leftrightarrow\left(x+2y\right)\left(3x+4y\right)=96\)

Ta có: \(96=1\cdot96=2\cdot48=3\cdot32=4\cdot24=8\cdot12=6\cdot16\)

\(x,y>0\Rightarrow \)\(\left\{\begin{matrix}3x+4y>7\\x+2y>3\end{matrix}\right.\)

Ta có các hệ sau: \(\left\{\begin{matrix}x+2y=4\\3x+4y=24\end{matrix}\right.\)\(\left(I\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=16\\y=-6\end{matrix}\right.\left(Loai\right)\)

\(\left\{\begin{matrix}x+2y=6\\3x+4y=16\end{matrix}\right.\)\(\left(II\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=4\\y=1\end{matrix}\right.\) (Thỏa mãn)

\(\left\{\begin{matrix}x+2y=8\\3x+4y=12\end{matrix}\right.\)\(\left(III\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=4\\y=6\end{matrix}\right.\left(Loai\right)\)

\(\left\{\begin{matrix}x+2y=12\\3x+4y=8\end{matrix}\right.\)\(\left(IV\right)\Leftrightarrow\)\(\left\{\begin{matrix}x=-16\\y=14\end{matrix}\right.\left(Loai\right)\)

Vậy nghiệm của phương trình là \(\left\{\begin{matrix}x=4\\y=1\end{matrix}\right.\)

5 tháng 8 2015

x; y nguyên dương nên 8y2 < 96 =>  y< 96/8 = 12 => y= 1; 4; 9 => y = 1; 2; 3

Với y = 1 => 3x+ 10x + 8 = 96 => 3x2  + 10x - 88 = 0 => 3x- 12x + 22x - 88 = 0 

=> 3x. (x - 4) + 22. (x -4) = 0 => (3x + 22).(x - 4) = 0 => 3x - 22 = 0 hoặc x - 4 = 0 

=> x = 22/3 (Loại) hoặc x = 4 (Nhận)

Với y = 2 => 3x+ 20x + 32 = 96 => 3x+ 20x = 64 => x. (3x + 20) = 64

=> 3x + 20 là ước của 64 mà x nguyên dương nên 3x + 20 > 20 => 3x + 20 = 32; 64 

thử các trường hợp => khồng có số x thỏa mãn

Với y = 3 : tương tự

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:
$x^2+2y^2+x^2y^2-10xy+16=0$

$\Leftrightarrow (x^2+y^2-2xy)+(x^2y^2-8xy+16)+y^2=0$

$\Leftrightarrow (x-y)^2+(xy-4)^2+y^2=0$

Vì $(x-y)^2\geq 0; (xy-4)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(x-y)^2=(xy-4)^2=y^2=0$

$\Leftrightarrow x=y=0$ và $xy=4$ (vô lý)

Vậy không tồn tại $x,y$ thỏa mãn đề nên cũng không tồn tại $T$.

22 tháng 11 2018

pt đã cho <=> 2.(2xy-1)2 +(x-y)2 =2

=> 2.(2xy-1)nhỏ hơn hoặc bằng 2. lại do x,y nguyên nên hoặc 2.(2xy-1)2=0 hoặc 2.(2xy-1)2=2

7 tháng 8 2019

9 tháng 12 2021

8x2y2+x2+y2=10xy8x2y2+x2+y2=10xy

⇔8x2y2−8xy+x2+y2−2xy=0⇔8x2y2-8xy+x2+y2-2xy=0

⇔2(4x2y2−4xy+1)+x2+y2−2xy=2⇔2(4x2y2-4xy+1)+x2+y2-2xy=2

⇔2(2xy−1)2+(x−y)2=2⇔2(2xy-1)2+(x-y)2=2

Nếu(2xy−1)2=0⇒(x−y)2=2(2xy-1)2=0⇒(x-y)2=2(vô nghiệm)

Nếu2(2xy−1)2=2⇒(x−y)2=0⇒x=y2(2xy-1)2=2⇒(x-y)2=0⇒x=y

(2x2−1)2=1⇒(2x2-1)2=1⇒[2x2−1=√12x2−1=√−1[2x2−1=12x2−1=−1 ⇒[x=−1;1x=0[x=−1;1x=0 

Nếu(2xy−1)2≥2⇒2=2(2xy−1)2+(x−y)2≥4(2xy-1)2≥2⇒2=2(2xy-1)2+(x-y)2≥4(vô nghiệm)

Vậy (x;y)(x;y) thỏa mãn các cặp là (0;0);(1;1);(−1;−1)(0;0);(1;1);(-1;-1)