K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

B C A D E I 1 2 1 1 2 2 1 2 1 2 2

a, xét \(\Delta\) ABE và \(\Delta\) ACD có

AE = AD (gt

\(\widehat{A}\) góc chung

AB = AC ( Δ ABC cân tại A )

=> \(\Delta\) ABE = \(\Delta\) ACD (cgc)

=> BE = CD

b, ta có AD + DB = AB

AE + EC = AC

mà AD = AE, AB = AC

=> DB = EC

ta có \(\widehat{D1}\) + \(\widehat{D2}\) = 1800

\(\widehat{E1}\) + \(\widehat{E2}\) = 1800

\(\widehat{D1}\) = \(\widehat{E1}\) ( \(\Delta\) ABE = \(\Delta\) ACD )

=> \(\widehat{D2}\) = \(\widehat{E2}\)

xét Δ BDI và ΔCEI có

DB = EC (cmt)

\(\widehat{D2}\) = \(\widehat{E2}\)( cmt )

\(\widehat{B1}\) = \(\widehat{C1}\) ( \(\Delta\) ABE = \(\Delta\) ACD)

=>Δ BDI = Δ CEI (gcg)

c, ta có \(\widehat{B1}\) + \(\widehat{B2}\) = \(\widehat{ABC}\)

\(\widehat{C1}\) + \(\widehat{ C2}\) = \(\widehat{ACB}\)

\(\widehat{B1}\) = \(\widehat{C1}\) ( \(\Delta\) ABE = \(\Delta\) ACD ) , \(\widehat{ ACB}\)= \(\widehat{ ABC}\) (\(\Delta\) ABC cân tại A)

=> \(\widehat{B2}\) = \(\widehat{C2}\) =>Δ BIC cân tại I

d,xét \(\Delta\) ADI và \(\Delta\) AEI có

AD = AE (gt)

DI = EI (Δ BDI = Δ CEI)

AI cạnh chung

=> \(\Delta\) ADI = \(\Delta\) AEI (ccc)

=>\(\widehat{A1}\) = \(\widehat{A2}\)

=> AI là tia phân giác của \(\widehat{BAC}\)

haha

19 tháng 1 2017

ban tu ve hinh nha

a.xet \(\Delta ADCva\Delta AEB\)

AD=AE

goc A chung

AB=AC

=> \(\Delta ADC=\Delta AEB\)

=> CD=BE

b.ta co : AD+DB=AB

AE+EC=AC

ma AD=AE ; AB=AC

=> BD=CE

xet \(\Delta BDIva\Delta CEI\)

góc BID = goc CIE ( đối đỉnh )

BD=CE

goc DBI = goc CEI ( cau a)

=> \(\Delta BDI=\Delta CEI\)

=> BI=CI

=> tam giac BIC can tai i

d.xet \(\Delta AIDva\Delta AIE\)

AD=AE

AI chung

DI=IE ( cau b)

=> \(\Delta AID=\Delta AIE\)

=> goc AID=gocAIE
=> AI la phan giac cua goc BAC
30 tháng 4 2019

bạn vào câu hỏi tương tự nha

30 tháng 4 2019

a, xét tam giác AHB và tam giác AHC có : AH chung

góc AHB = góc AHC = 90 do ...

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác AHB = tam giác AHC (ch - cgv)

b, tam giác AHB = tam giác AHC (câu a)

=> góc BAH = góc CAH (đn)

có HD // AC (gt) => góc DHA = góc HAC (slt)

=> góc DHA = góc DAH 

=> tam giác DAH cân tại D (tc)

NV
2 tháng 3 2023

Hai tam giác ABN và ACM bằng nhau (\(\widehat{A}\) chung; AB=AC; \(\widehat{ABN}=\dfrac{1}{2}\widehat{B}=\dfrac{1}{2}\widehat{C}=\widehat{ACM}\))

\(\Rightarrow AM=AN\) \(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AC}\Rightarrow MN||BC\)

Áp dụng định lý phân giác: \(\dfrac{AM}{BM}=\dfrac{AC}{BC}\Leftrightarrow\dfrac{AM}{AM+BM}=\dfrac{AC}{AC+BC}\)

\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AC}{AC+BC}=\dfrac{a}{a+b}\)

Theo cmt MN//BC, áp dụng định lý Talet:

\(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Rightarrow\dfrac{MN}{BC}=\dfrac{a}{a+b}\Rightarrow MN=\dfrac{ab}{a+b}\)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

A B C H E F

Hình minh họa nhé ! 

a,  Xét \(\Delta\)ABH và \(\Delta\)ACH ta có 

AB = AC (gt) 

^AHB = ^AHC = 90^0 

AH chung 

=> \(\Delta\)ABH = \(\Delta\)ACH (c.g.c) (1)

b, Vì (1) ta suy ra : BH = HC (tương ứng)

Ta có : \(BH=HC=\frac{BC}{2}=\frac{12}{2}=6\)cm

Áp dụng định lí Py ta go ta có : 

\(AB^2=BH^2+AH^2\)

\(10^2=6^2+AH^2\)

\(100-36=AH^2\Leftrightarrow64=AH^2\Leftrightarrow AH=8\)cm 

Tự xử c;d bn nhé ! 

29 tháng 6 2020

Lâu rồi chưa làm dạng này có gì sai sót thì bạn comment xuống dưới nhé !

A H B C E F K

Lấy K đối xứng mới H qua B

Xét tam giác KAH có BK=BH; AF=FH nên BF là đường trung bình của tam giác HAH 

\(\Rightarrow BF=\frac{AK}{2}\)

Tương tự \(HE=\frac{AC}{2}\)

Theo BĐT tam giác ta có được \(BF+HE=\frac{AC+AK}{2}>\frac{KC}{2}=\frac{KB+BC}{2}=\frac{BH+BC}{2}=\frac{\frac{1}{2}BC+BC}{2}=\frac{3}{4}BC\)

Vậy ta có đpcm

Bạn CTV gì đó ơi bạn ý nhờ làm câu d mà :)) Sao lại tự xử c,d được :V 

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC