Cho tam giác ABC vuông tại A, có góc ABC= 60 độ. Tia phân giác của góc B cắt AC tại E. Từ E vẽ EH vuông góc với BC.
a) CM: Tam giác ABE=Tam giác HBE
b) Qua H vẽ HK song song với BE (K thuộc AC). CM: Tam giác EHK đều
c) HE cắt BA tại M, MC cắt BE tại N. CM: BN là đường trung trực của MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
a,Xét tg ABE và tg HBE:
^BAE=^BHE=90*
^ABE=^HBE(BE là pg)
BE chung
=>tg ABE= tg HBE(ch-gn)
b,+,tg ABC có:^BAC=90*,^ABC=60*
=>^C=30*
+,tg BHE có: ^BHE=90*,^EBH=30*(^EHB=1/2ABC)
=>^HEB=60*
Mà HK // BE
=>^HBE=^EHK=60*(slt)
+, tg CHE có:^EHC=90*,^C=30*
=>HEC=60*
+,tg HEK có:
^EHK=60*,^HEC(^HEK)=60*
=>TG HEK đều(dhnb)
Phần c mik chỉ ghi các bước thôi còn bạn tự chình bày nhé.
c, +,CM:tg AEM=tg HEC(cgv-gnk)
=>AM=HC
+,CM:BM=BC
+,CM:tg BMI=tgBCI(cgc)
=>NM=NC
Xong r nha. Chúc bạn học tốt.
a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
góc ABE=góc hBE
=>ΔABE=ΔHBE
c: Xét ΔBHM vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBM chung
=>ΔBHM=ΔBAC
=>BM=BC
=>ΔBMC cân tại B
mà BN là đường phân giác
nên N là trung điểm của CM
=>NM=NC
góc ABE=góc HBE=60/2=30 độ
=>góc AEB=góc HEB=60 độ
=>góc AEH=120 độ
HK//BE
=>góc KHE=góc HEB=60 độ
góc KEH=180-120=60 độ
Xét ΔKEH có góc KHE=góc KEH=60 độ
nên ΔKEH đều
a) Xét \(\Delta ABE\) và \(\Delta HBE\):
BE chung
\(\widehat{ABE}=\widehat{EBH}\)
\(\widehat{EAB}=\widehat{EHB}=90^o\)
\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)
b) \(\widehat{EBH}=\dfrac{1}{2}\widehat{B}=30^o\)
\(\widehat{ACB}=90^o-\widehat{B}=30^o\)
\(\Rightarrow\Delta EBC\) cân tại E
Mà EH vuông góc BC
\(\Rightarrow HB=HC\)
c) \(\widehat{HEB}=90^o-\widehat{EBH}=60^o\)
\(KH//BE\Rightarrow\widehat{KHE}=\widehat{HEB}=60^o\)
\(\widehat{HEB}+\widehat{AEB}=60^o+60^o=120^o\)
\(\Rightarrow\widehat{KEH}=180^o-120^o=60^o\)
\(\Rightarrow\Delta EHK\) đều
d) Theo phần a. \(\Delta ABE=\Delta HBE\Rightarrow AE=EH\)
\(\Delta IAE\) vuông ở A \(\Rightarrow IE>AE\)
\(\Rightarrow IE>EH\)
a) Xét ΔABEΔABE và ΔHBEΔHBE:
BE chung
ˆABE=ˆEBHABE^=EBH^
ˆEAB=ˆEHB=90oEAB^=EHB^=90o
⇒ΔABE=ΔHBE(ch−gn)⇒ΔABE=ΔHBE(ch−gn)
b) ˆEBH=12ˆB=30oEBH^=12B^=30o
ˆACB=90o−ˆB=30oACB^=90o−B^=30o
⇒ΔEBC⇒ΔEBC cân tại E
Mà EH vuông góc BC
⇒HB=HC⇒HB=HC
c) ˆHEB=90o−ˆEBH=60oHEB^=90o−EBH^=60o
KH//BE⇒ˆKHE=ˆHEB=60oKH//BE⇒KHE^=HEB^=60o
ˆHEB+ˆAEB=60o+60o=120oHEB^+AEB^=60o+60o=120o
⇒ˆKEH=180o−120o=60o⇒KEH^=180o−120o=60o
⇒ΔEHK⇒ΔEHK đều
d) Theo phần a. ΔABE=ΔHBE⇒AE=EHΔABE=ΔHBE⇒AE=EH
ΔIAEΔIAE vuông ở A ⇒IE>AE
Từ E vẽ EH // BC (H thuộc BC) mình nghĩ chỗ này đề sai rồi bạn, EH // BC thì làm sao H thuộc BC được
a) xét \(\Delta\)vuông ABE và\(\Delta\)vuông HBE có:
BE là cạnh chung
gcABE=gcHBE(BE là tia p.g của gc ABC)
=> tg ABE=tgHBE(cạnh huyền góc nhọn)
b) theo câu a: tg ABE= tg HBE (cmt)=>AB=BH (1)
trong tg vuông ABC có: gc B =60o=> gc C=30o
=> AB=\(\frac{1}{2}\) BC(2)
=> BH = \(\frac{BC}{2}\)mà H thuộc BC => H là trung điểm BC
xét tg BCE có:H là TĐ của BC(cmt)
HK//BE(gt)=> K là trung điểm EC
xét tg vuông HEC có: HK là đường trung tuyến ứng vs cạnh huyền
=> HK=EK= \(\frac{EC}{2}\)=> tg HEK cân ở K
lại có:gc EKH = gc ACB+gc KHC( góc ngoài cuả tgHKC)
gc KHC=gc EBC=30o( đồng vị ,HK//BE)
do đó gc EHK=gc ACB+gc EBC=30+30=60o
tam giác cân có 1 góc = 60 o là tam giác đều
c)(nhiều cách lúm)
trong tg vuông HBM: gc HBM= 60o=>gc HMB= 30o
=>\(BH=\frac{1}{2}BM\)mà BH= \(\frac{1}{2}BC\)(cmt )
=> BM=BC=> tg BMC cân ở B
BN là đường p.g của gcMBC
=> BN đồng thời là đường trung trực của tgMBC hay của cạnh MC
Làm hay lắm mik rất ngưỡng mộ bạn