Tìm tất cả các giá trị của x,y sao cho:
xy+1=x+y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+1=x+y\)
\(\Leftrightarrow xy-x-y+1=0\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=1\end{cases}}}\)
Vậy \(x=1;y=1\)
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
Ta có xy+1=x+y
\(\Rightarrow xy+1-x-y=0\)
\(\Leftrightarrow\left(xy-x\right)+\left(1-y\right)=0\)
\(\Leftrightarrow x\left(y-1\right)+\left(1-y\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=0\)
Hoặc x=-1; y tùy ý
Hoặc y=1; x tùy ý
Vậy cặp (x;y) là (-1;tùy ý);(tùy ý;1)