So sánh:
\(\sqrt{168}\) và \(2+\sqrt{26}+\sqrt{37}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)
Lời giải:
\(5\sqrt{2}+4\sqrt{5}-16=(\sqrt{50}-7)+(\sqrt{80}-9)\)
\(=\frac{1}{\sqrt{50}+7}-\frac{1}{\sqrt{80}+9}\)
Dễ thấy \(\sqrt{50}+7< \sqrt{80}+9\Rightarrow \frac{1}{\sqrt{50}+7}>\frac{1}{\sqrt{80}+9}\)
\(\Rightarrow 5\sqrt{2}+4\sqrt{5}-16=\frac{1}{\sqrt{50}+7}-\frac{1}{\sqrt{80}+9}>0\)
\(\Rightarrow 5\sqrt{2}+4\sqrt{5}>16\)
Cách 1: Theo casio ta có:
+ \(\sqrt{3}+\sqrt{7}\approx4,378\)
+ \(\sqrt{19}\approx4,36\)
=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)
Cách 2: Ta có: \(\left(\sqrt{3}+\sqrt{7}\right)^2=3+7+2.\sqrt{21}=10+\sqrt{84}\)
\(\left(\sqrt{19}\right)^2=19=10+\sqrt{81}\)
Vì \(10+\sqrt{84}>10+\sqrt{81}\)
=> \(\left(\sqrt{3}+\sqrt{7}\right)^2>\left(\sqrt{19}\right)^2\)
=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)
hay cái gì ? cái đó lớp 1 đã biết làm ; khỏi phải chỉ Dennis cũng biết làm cách đó
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{6+2\sqrt{5}}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}\)
Vì \(\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\Rightarrow\sqrt{\sqrt{6+\sqrt{20}}}< \sqrt{1+\sqrt{6}}\)
ta thấy: \(\sqrt{26}>\sqrt{25}=5\)
\(\sqrt{37}>\sqrt{36}=6\)
=> \(2+\sqrt{26}+\sqrt{37}>2+5+6=13\) (1)
ta lại thấy: \(\sqrt{168}< \sqrt{169}=13\) (2)
từ 1 và 2 => \(2+\sqrt{26}+\sqrt{37}>\sqrt{168}\)
vậy \(2+\sqrt{26}+\sqrt{37}>\sqrt{168}\)