K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2017

A B C H

\(\Delta ABC\) cân ở A nên ta có : AB=AC=5 (cm)

\(\Delta AHC\) vuông tại H nên áp dụng định lí Pi-ta go ta có:

AC2=HC2+HA2 \(\Rightarrow\)HC2=AC2-HA2=52-42=25-16=9 => HC=3 (cm)

Tương tự ta có \(\Delta AHB\) vuông ở H nên áp dụng định lí Pi-ta go ta có:

AB2=AH2+HB2 => HB2=AB2-AH2=52-42=25-16=9 => HB=3 (cm)

Ta có : BC=BH+HC=3+3=6 (cm)

Vậy BC=6 (cm) ; AC=5 (cm)

22 tháng 10 2023

a) Để tính AC, ta sử dụng định lý Pythagoras trong tam giác vuông: AC^2 = AB^2 + BC^2. Với AB = 12cm và BC = 20cm, ta có: AC^2 = 12^2 + 20^2 = 144 + 400 = 544. Do đó, AC = √544 ≈ 23.32cm.

Để tính góc B, ta sử dụng công thức sin(B) = BC/AC. Với BC = 20cm và AC = 23.32cm, ta có: sin(B) = 20/23.32 ≈ 0.857. Từ đó, góc B ≈ arcsin(0.857) ≈ 58.62°.

Để tính AH, ta sử dụng công thức cos(B) = AH/AC. Với góc B ≈ 58.62° và AC = 23.32cm, ta có: cos(B) = AH/23.32. Từ đó, AH = 23.32 * cos(58.62°) ≈ 11.39cm.

b) Ta cần chứng minh AE.AC = AB^2 - HB^2. Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AC = AB * cos(B) (theo định lý cos trong tam giác vuông) HB = AB * sin(B) (theo định lý sin trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AE.AC = (AB * sin(B)) * (AB * cos(B)) = AB^2 * sin(B) * cos(B) = AB^2 * (sin(B) * cos(B)) = AB^2 * (sin^2(B) / sin(B)) = AB^2 * (1 - sin^2(B)) = AB^2 * (1 - (sin(B))^2) = AB^2 * (1 - (HB/AB)^2) = AB^2 - HB^2

Vậy, ta đã chứng minh AE.AC = AB^2 - HB^2.

c) Ta cần chứng minh AF = AE * tan(B). Vì ΔABC vuông tại A, ta có: AE = AB * sin(B) (theo định lý sin trong tam giác vuông) AF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: AF = AB * cos(B) = AB * (cos(B) / sin(B)) * sin(B) = (AB * cos(B) / sin(B)) * sin(B) = AE * sin(B) = AE * tan(B)

Vậy, ta đã chứng minh AF = AE * tan(B).

d) Ta cần chứng minh tỉ lệ giữa các đường cao trong tam giác vuông ΔABC. CE/BF = AC/AB

Vì ΔABC vuông tại A, ta có: CE = AC * cos(B) (theo định lý cos trong tam giác vuông) BF = AB * cos(B) (theo định lý cos trong tam giác vuông)

Thay các giá trị vào biểu thức cần chứng minh: CE/BF = (AC * cos(B)) / (AB * cos(B)) = AC/AB

Vậy, ta đã chứng minh CE/BF = AC/AB.

2 tháng 3 2022

Ta có ΔABC cân tại B ⇒AB=BC=BH+CH=4+1=5(cm)

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH ta có:​
\(AH^2+BH^2=AB^2\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{5^2-4^2}\\ \Rightarrow AH=3\left(cm\right)\)

Áp dụng định lý Pi-ta-go vào tam giác vuông AHC ta có:

\(AH^2+HC^2=AC^2\\ \Rightarrow3^2+1^2=AC^2\\ \Rightarrow AC=\sqrt{10}\left(cm\right)\)

2 tháng 3 2022

Ta có ΔABC cân tại B ⇒AB=BC=BH+CH=4+1=5(cm)

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH ta có:
\(AH^2+BH^2=AB^2\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{5^2-4^2}\\ \Rightarrow AH=3\left(cm\right)\)

23 tháng 4 2017

Cách 1: Dùng pytago với tgiác ABH => BH luôn

Cách 2: Dùng pytago với tgiác ACH => HC 

Mà phải cm H là trung điểm BC nữa => HB. Nhưng cminh cũng không có gì khó khăn đâu mà
Nên tốt nhất bạn chọn cách 1 đi. 

23 tháng 4 2017

Vì \(AH⊥BC\Rightarrow\Delta AHB\) là tam giác vuông

Vì \(\Delta AHB\) vuông \(\Rightarrow AB^2=AH^{^{ }2}+BH^{^{ }2}\left(Py-ta-go\right)\)

                              hay \(^{5^2=4^2+BH^2}\)

                             \(5^2-4^2=BH^2\)

                             \(25-16=BH^2\)

                            \(9=BH^2\Rightarrow BH=\sqrt{9}\Rightarrow BH=3cm\)

Vậy BH=3cm

                                   

23 tháng 4 2018

Bạn tự vẽ hình nha.

a) Xét tam giác ABH và tam giác ACH

Ta có: Góc AHB = Góc AHC ( = 90 độ )

          AB = AC ( Vì tam giác ABC cân )

          Góc ABH = Góc ACH ( Vì tam giác ABC cân )

=> Tam giác ABH = Tam giác ACH ( ch-gn )

=> HB = HC ( hai cạnh tương ứng )

     Góc BAH = Góc CAH ( Hai góc tương ứng 0

=> Đpcm

b) Vì HB = HC ( câu a )

Mà BC = HB + HC

=> HB = HC = BC / 2 = 8 / 2 = 4 cm

Xét tam giác ABH vuông tại H

=> AH2 + BH2 = AB2

Hay AH2 + 42 = 52

=> AH2 = 52 - 42

=> AH2 = 9

=> AH = 3

c) Xét tam giác AHD và tam giác AHE

Ta có: Góc ADH = Góc AEH ( = 90 độ )

          AH là cạnh huyển chung

         Góc BAH = Góc CAH ( câu a )

=> Tam giác AHD = Tam giác AHE ( ch-gn )

=> HD = HE ( Hai cạnh tương ứng )

=> Tam giác HDE cân tại H

=> Đpcm

23 tháng 4 2018
bn Myy_Yukru ở phần a) xét tam giác thì bn xét có 2 góc 1 cạnh => là trg hợp c-g-c bn ak
8 tháng 7 2021

A B H C

a,xét ΔAHB VÀ ΔAHC

AB=AC(gt)

góc AHB= góc AHC=900

AH:cạnh chung

⇒ΔAHB=ΔAHC(cạnh huyền- góc nhọn)

⇒AH là đường trung tuyến của ΔABC

b,Ta có HB=1/2 BC

➩HB =1/2*BC

⇒HB=1/2*8

⇒HB=4(cm)

xét ΔAHBcó góc AHB=900

 AB2=AH2+HB2(định lý py -ta- go)

⇒AH2=AB2-HB2

⇒ AH2= 52- 42

⇒AH2=25-16

⇒AH2=9

⇒AH2=(3)2=(-3)2

⇒AH=3(cm)

28 tháng 2 2019

tự vẽ hình:

a. xét tam giác vuông AHB và tam giác AHC,ta có:
AB = AC ( gt)
AH là cạnh chung

=> tam giác AHB = tam giác AHC ( cạnh huyền - cạnh góc vuông)
=> HB = HC ( 2 cạnh tương ứng)

=> \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng) 

mà HB = HC => BC/2 = 8/2= 4 ( cm)

b. xét tam giác vuông BH,theo định lý Pi-ta-go:
AB2 = AH2 + BH2 

=> 52 = x2 + 4

=> x2 = 5- 4

=> x2 = 9 

=> \(\sqrt{x}=9\) 

=> x = 3

Vậy AH = 3 cm

câu c nghĩ đã :)