C\m Giúp mk vs
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\) Với \(a;b\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
1.
C/m bổ đề: \(a^3-b^3\ge\frac{1}{4}\left(a^3-b^3\right)\) với \(\forall a,b\in R,a\ge b\)
\(\Leftrightarrow4a^3-4b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\ge0\)
\(\Leftrightarrow3a^3+3a^2b-3ab^2-3b^3\ge0\)
\(\Leftrightarrow3\left(a^2-b^2\right)\left(a+b\right)\ge0\)
\(\Leftrightarrow3\left(a+b\right)^2\left(a-b\right)\ge0\)(đúng)
Theo bài ra: \(a^3-b^3\ge3a-3b-4\)
\(\Leftrightarrow\) Cần c/m: \(\left(a-b\right)^3\ge12a-12b-16\)(1)
Thật vậy:
\(\left(1\right)\)\(\Leftrightarrow\left(a-b\right)^3-12\left(a-b\right)+16\ge0\)
\(\Leftrightarrow\left[\left(a-b\right)^3-8\right]-12\left(a-b-2\right)\ge0\)
\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a-b\right)+4\right]-12\left(a-b-2\right)\ge0\)
\(\Leftrightarrow\left(a-b-2\right)\left[\left(a-b\right)^2+2\left(a+b\right)-8\right]\ge0\)
\(\Leftrightarrow\left(a-b-2\right)^2\left(a-b+4\right)\ge0\) (đúng với mọi a,b thỏa mãn \(a,b\in R,a\ge b\))
2.
\(BĐT\Leftrightarrow\frac{1}{\frac{a+b}{ab}}+\frac{1}{\frac{c+d}{cd}}\le\frac{1}{\frac{a+b+c+d}{\left(a+c\right)\left(b+d\right)}}\)
\(\Leftrightarrow\frac{ab}{a+b}+\frac{cd}{c+d}\le\frac{\left(a+c\right)\left(b+d\right)}{a+b+c+d}\)
\(\Leftrightarrow\frac{ab\left(c+d\right)+cd\left(a+b\right)}{\left(a+b\right)\left(c+d\right)}\le\)\(\frac{ab+ad+bc+cd}{a+b+c+d}\)
\(\Leftrightarrow\frac{abc+abd+acd+bcd}{ac+ad+bc+bd}\le\frac{ab+ad+bc+cd}{a+b+c+d}\)
\(\Leftrightarrow\left(ad+ab+bc+cd\right)\left(ac+ad+bc+bd\right)\ge\)\(\left(a+b+c+d\right)\left(abc+abd+acd+bcd\right)\)
\(\Leftrightarrow\left(ad\right)^2-2abcd+\left(bc\right)^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng với mọi a,b,c,d>0)
\(\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\)
\(\frac{1+a^2-1-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{1+b^2-1-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{a^2-ab}{\left(1+a^2\right)\left(1+ab\right)}+\frac{b^2-ab}{\left(1+b^2\right)\left(1+ab\right)}\)
\(\frac{\left(ab-1\right)\left(b-a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\left(1\right)\)
\(a\ge b\ge1=>ab\ge0\left(2\right)\)
(1)(2)=>đề bài
\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=b^2+2bc+c^2\\b^2=a^2+2ac+c^2\\c^2=a^2+2ab+b^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2+c^2-a^2=-2bc\\a^2+c^2-b^2=-2ac\\a^2+b^2-c^2=-2ab\end{matrix}\right.\Rightarrow P=\frac{1}{-2bc}+\frac{1}{-2ac}+\frac{1}{-2ab}=\frac{a+b+c}{-2abc}=0\)
a) \(P=\frac{1}{b^2+c^2-a^2}+\frac{1}{a^2+b^2-c^2}+\frac{1}{a^2+c^2-b^2}\) ( Sửa đề )
\(P=\frac{1}{\left(b+c\right)^2-2ab-a^2}+\frac{1}{\left(a+b\right)^2-2ab-c^2}+\frac{1}{\left(a+c\right)^2-2ac-b^2}\)
Vì a + b + c = 0
Nên a + b = -c
=> ( a + b )2 = (-c)2 = c2
Tương tự: ( b + c )2 = a2 và ( a + c )2 = b2
\(\Rightarrow P=\frac{1}{a^2-2bc-a^2}+\frac{1}{c^2-2ab-c^2}+\frac{1}{b^2-2ac-b^2}\)
\(P=\frac{1}{-2bc}+\frac{1}{-2ab}+\frac{1}{-2ac}\)
\(P=\frac{a+b+c}{-2abc}=\frac{0}{-2abc}=0\)
Xét: \(1+c^2=ab+bc+ca+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự CM được:
\(1+b^2=\left(a+b\right)\left(c+b\right)\) và \(1+a^2=\left(c+a\right)\left(b+a\right)\)
Mặt khác ta tách: \(\hept{\begin{cases}a-b=\left(a+c\right)-\left(b+c\right)\\b-c=\left(a+b\right)-\left(c+a\right)\\c-a=\left(c+b\right)-\left(a+b\right)\end{cases}}\)
Thay vào ta được:
\(Vt=\frac{\left(a+c\right)-\left(b+c\right)}{\left(a+c\right)\left(b+c\right)}+\frac{\left(a+b\right)-\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}+\frac{\left(c+b\right)-\left(a+b\right)}{\left(b+c\right)\left(a+b\right)}\)
\(=\frac{1}{b+c}-\frac{1}{c+a}+\frac{1}{c+a}-\frac{1}{a+b}+\frac{1}{a+b}-\frac{1}{b+c}\)
\(=0\)
=> đpcm
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)
\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)
\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)
\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)
\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)
Cộng vế với vế ta có đpcm
\(BDT\Leftrightarrow\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\ge0\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{b^2+1+a^2+1}{\left(a^2+1\right)\left(b^2+1\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(1+ab\right)\left(b^2+1+a^2+1\right)\ge2\left(a^2+1\right)\left(b^2+1\right)\)
\(\Leftrightarrow\left(1+ab\right)\left(b^2+a^2+2\right)\ge2\left(a^2+1\right)\left(b^2+1\right)\)
\(\Leftrightarrow b^2\left(1+ab\right)+a^2\left(1+ab\right)+2\left(1+ab\right)\ge\left(2a^2+2\right)\left(b^2+1\right)\)
\(\Leftrightarrow b^2+ab^3+a^2+a^3b+2+2ab\ge b^2\left(2a^2+2\right)+2a^2+2\)
\(\Leftrightarrow b^2+ab^3+a^2+a^3b+a^3b+2+2ab\ge2a^2b^2+2b^2+2a^2+2\)
\(\Leftrightarrow ab^3+a^3b+2+2ab\ge2a^2b^2+a^2+b^2+2\)
\(\Leftrightarrow ab^3+a^3b+2ab\ge2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab\left(a^2+b^2\right)+2ab\ge2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab\left(a^2+b^2\right)-\left(a^2+b^2\right)\ge2a^2b^2-2ab\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(ab-1\right)\ge2ab\left(ab-1\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đpcm )