Cho biểu thức A=\(\frac{x^2+2x-y^2-2y}{x^2-y^2}\)
a)Tìm ĐKXĐ của A
b) Rút gọn A
c)Tính giá trị của A khi x= 5,y= 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ là \(x^2-y^2\)khác 0
b) A=\(\frac{x^2+2x-y^2-2y}{x^2-y^2}=\frac{\left(x^2-y^2\right)+2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{\left(x+y\right)\left(x-y\right)+2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{\left(x-2\right)\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x+y+2}{x+y}=1+\frac{2}{x+y}\)
c) Thay x=5,y=6 vào biểu thức A ta được
A=\(2+\frac{2}{5-6}=2+\frac{2}{-1}=2-2=0\)
Vậy A=0
DKXD x và Y khác 0
B) rút gọn x^2 và y^2 ta dc \(\frac{2x-2y}{1}\)
C. \(2.5-2.6=10-12=-2\)
a)
\(A=\dfrac{x^2+2x-y^2-2y}{x^2-y^2}\\ =\dfrac{\left(x^2-y^2\right)+\left(2x-2y\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{\left(x-y\right)\left(x+y\right)+2\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{\left(x-y\right)\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}\\ =\dfrac{x+y+2}{x+y}\)
b)
thay x=5,y=6 vào biểu thức A ta có
\(\dfrac{5+6+2}{5+6}=\dfrac{13}{11}\)
vậy A=13/11 kkhi x=5,y=6
a: \(A=\dfrac{\left(x+y\right)\left(x-y\right)+2\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{x+y+2}{x+y}\)
b: Khi x=5 và y=6 thì \(A=\dfrac{5+6+2}{5+6}=\dfrac{13}{11}\)
1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4
a) rút gọn P
b) tìm x để P>1/3
c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên
2. Cho 2 biểu thức
A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25
a) tính giá trị của A khi x= 6-2√5
b) rút gọn B
c) tìm a để pt A-B=a có nghiệm
chúc bạn học tốt
Bài 1 :
\(a,P=\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}=\left[\frac{x}{\left(x+6\right)\left(x-6\right)}-\frac{x-6}{x\left(x+6\right)}\right]:\frac{2x-6}{x\left(x+6\right)}\)
\(=\frac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}=\frac{6\left(2x-6\right)}{x\left(x+6\right)\left(x-6\right)}.\frac{x\left(x+6\right)}{2x-6}\)
\(=\frac{6}{x-6}\)
\(b,\)Với \(x\ne-6;x\ne6;x\ne0;x\ne3\) Thì
\(P=1\Rightarrow\frac{6}{X-6}=1\Rightarrow6=x-6\Rightarrow x=12\)(Thỏa mãn \(ĐKXĐ\))
\(c,\)Ta có :
\(P< 0\Rightarrow\frac{6}{X-6}< 0\Rightarrow X-6< 0\Rightarrow X< 6\)
Do : \(x\ne-6;x\ne6;x\ne0;x\ne3\) ,Nên với \(x< 6\)và \(x\ne-6;x\ne0;x\ne3\) thì \(P< 0\)
a)\(A=\left(\frac{x+y}{x-2y}+\frac{3y}{2y-x}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x+y-3y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(\frac{x-2y}{x-2y}-3xy\right).\frac{x+1}{3xy-1}+\frac{x^2}{x+1}\)
\(=\left(1-3xy\right).\frac{-x-1}{1-3xy}+\frac{x^2}{x+1}\)
\(=-\left(x+1\right)+\frac{x^2}{x+1}\)`
\(=\frac{-\left(x+1\right)^2+x^2}{x+1}\)
\(=\frac{-x^2-2x-1+x^2}{x+1}\)
\(=\frac{-2x-1}{x+1}\)(1)
b) Thay \(x=-3,y=2014\)vào (1) ta được:
\(A=\frac{-2.\left(-3\right)-1}{-3+1}=\frac{-5}{2}\)
Vậy \(A=\frac{-5}{2}\)với x=-3 và y=2014
a)Đk:\(x^2-y^2\ne0\Rightarrow\left(x-y\right)\left(x+y\right)\ne0\)\(\Rightarrow\left\{\begin{matrix}x\ne y\\x\ne-y\end{matrix}\right.\)
b)\(A=\frac{x^2+2x-y^2-2y}{x^2-y^2}=\frac{x^2+xy+2x-xy-y^2-2y}{x^2-y^2}\)
\(\frac{x\left(x+y+2\right)-y\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y+2\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x+y+2}{x+y}\)
c)Khi \(\left\{\begin{matrix}x=5\\y=6\end{matrix}\right.\) thay vào A ta có:
\(A=\frac{x+y+2}{x+y}=\frac{5+6+2}{5+6}=\frac{13}{11}\)
cacs bn làm ra giấy rồi chụp cũng ddcj,lm ơn đó , tối nay mk đi học thêm rồi