K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

17 tháng 7 2023

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

ĐKXĐ: \(x\notin\left\{0;-9\right\}\)

Ta có: \(\dfrac{1}{x+9}-\dfrac{1}{x}=\dfrac{1}{5}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{20x}{20x\left(x+9\right)}-\dfrac{20\left(x+9\right)}{20x\left(x+9\right)}=\dfrac{4x\left(x+9\right)+5x\left(x+9\right)}{20x\left(x+9\right)}\)

Suy ra: \(4x^2+36x+5x^2+45x=20x-20x-180\)

\(\Leftrightarrow9x^2+81x+180=0\)

\(\Leftrightarrow x^2+9x+20=0\)

\(\Leftrightarrow x^2+4x+5x+20=0\)

\(\Leftrightarrow x\left(x+4\right)+5\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(nhận\right)\\x=-5\left(nhận\right)\end{matrix}\right.\)

Vậy: S={-4;-5}

10 tháng 12 2017

4x=2x+1

<=> (22)x=2x+1

22x=2x+1

=> 22x-2x+1=0

<=> 22x-2x=1

2x=1

<=> x=0

10 tháng 12 2017

Cảm ơn bạn nhìu nhé Bastkoo . <3 :)

11 tháng 7 2016

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left(\left(x-1\right)^2-y^2\right)\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

11 tháng 7 2016

bài này bn hoc qt đung rui, tui làm nhé

1)= x(x2 -2x +1 - y) = x((x-1)2 - y)

a) Ta có: \(4\left(x-2\right)^2+xy-2y\)

\(=4\left(x-2\right)^2+y\left(x-2\right)\)

\(=\left(x-2\right)\left(4x-8+y\right)\)

b) Ta có: \(x\left(x-y\right)^3-y\left(y-x\right)^2-y^2\left(x-y\right)\)

\(=x\left(x-y\right)^3-y\left(x-y\right)^2-y^2\left(x-y\right)\)

\(=\left(x-y\right)\left[x\left(x-y\right)^2-y\left(x-y\right)-y^2\right]\)

10 tháng 8 2021

không ảnh hưởng

\(\dfrac{\left(x-9\right)^3}{2\left(9-x\right)}=\dfrac{-\left(x-9\right)^3}{-2\left(9-x\right)}=\dfrac{-\left(x-9\right)^3}{2\left(x-9\right)}=\dfrac{\left(x-9\right)^3}{-2\left(x-9\right)}\)

NV
31 tháng 8 2021

\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)

\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)

\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)

\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)

\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)

\(\Rightarrow a-b=2\Rightarrow a=b+2\)

Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)

\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)

\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)

8 tháng 5 2021

Hướng làm:

Thấy cả tử mẫu cộng lại đều bằng 2021 → Cộng thêm 1 rồi quy đồng với mỗi phân thức

\(\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\\ \Leftrightarrow\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\\ \Leftrightarrow\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}\right)=0\\ \Leftrightarrow x+2021=0\Leftrightarrow x=-2021\)

8 tháng 5 2021

\(< =>\dfrac{x+2}{2019}+1+\dfrac{x+3}{2018}+1=\dfrac{x+4}{2017}+1+\dfrac{x}{2021}+1\)

\(< =>\dfrac{x+2+2019}{2019}+\dfrac{x+3+2018}{2018}=\dfrac{x+4+2017}{2017}+\dfrac{x+2021}{2021}\)

\(< =>\dfrac{x+2021}{2019}+\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}-\dfrac{x+2021}{2021}=0\)

\(< =>\left(x+2021\right)\left(\dfrac{1}{2019}+\dfrac{1}{2018}-\dfrac{1}{2017}-\dfrac{1}{2021}=\right)=0\)

\(< =>x+2021=0< =>x=-2021\)

Vậy....