Giải và biện luận PT sau: (m+1)2x+1-m = (7m-5)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, pt \(\Leftrightarrow\)mx - 2=0
Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)
Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)
a) Ta có: \(m\left(x-1\right)=5-\left(m-1\right)x\)
\(\Leftrightarrow mx-m-5+mx-x=0\)
\(\Leftrightarrow\left(2m-1\right)x=5\)
-Nếu \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}\) :pt có dạng \(x=\dfrac{5}{2m-1}\)
=>pt có nghiệm \(x=\dfrac{5}{2m-1}\)
-Nếu \(2mm-1=0\Leftrightarrow m=\dfrac{1}{2}\):pt có dạng \(0x=5\)
\(\Rightarrow\) PT vô nghiệm
Kết luận: Nếu \(m\ne\dfrac{1}{2}\) thì pt có nghiệm \(x=\dfrac{5}{2m-1}\)
Nếu \(m=\dfrac{1}{2}\) thì pt vô nghiệm
d) Ta có: \(m\left(mx-1\right)=x+1\)
\(\Leftrightarrow\left(m^2-1\right)x=m+1\)
\(\Leftrightarrow\left(m-1\right)\left(m+1\right)x=m+1\)
-Nếu\(m=1\) : pt \(\Leftrightarrow0x=2\): pt vô nghiệm
-Nếu\(m\ne1\): pt\(\Leftrightarrow x=\dfrac{1}{m-1}\)
+nếu \(m=-1\): pt \(0x=0\) : pt có vô số nghiệm \(x\) thuộc R
+ nếu \(m\ne-1\): pt \(\Leftrightarrow x=\dfrac{1}{m-1}\)
Kết luận: Nếu \(m=1\) thì pt vô nghiệm
Nếu \(m\ne1\) ,\(m\ne1\) thì pt có nghiệm \(x=\dfrac{1}{m-1}\)
Nếu \(m=-1\) thì pt có vô số nghiệm \(x\) thuộc R
a: =>mx-m=5-mx+x
=>mx-m-5+mx-x=0
=>x(m+m-1)=m+5
=>x(2m-1)=m+5
Để phương trình vô nghiệm thì 2m-1=0
=>m=1/2
Để phương trình có nghiệm duy nhất thì 2m-1<>0
=>m<>1/2
b: =>m^2x-m-x-1=0
=>x(m^2-1)=m+1
Để phương trình có vô số nghiệm thì m+1=0
=>m=-1
Để phương trìnhvô nghiệm thì m-1=0
=>m=1
Để phương trình có nghiệm duy nhất thì m^2-1<>0
=>m<>1 và m<>-1
bài dễ mà :)
Pt ẩn x : \(\left(m^2-1\right)x=m+1\) ( 1 )
\(\Leftrightarrow\)\(\left(m+1\right)\left(m-1\right)x=m+1\)
- Nếu \(m^2-1\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)
Pt ( 1 ) có nghiệm : \(x=\frac{m+1}{\left(m+1\right)\left(m-1\right)}=\frac{1}{m-1}\)
Nếu \(m+1=0\Leftrightarrow m=-1\)
Pt ( 1 ) có dạng 0x = 0 pt vô số nghiệm
Nếu \(m-1=0\Leftrightarrow m=1\)
Pt ( 1 ) có dạng 0x = 2 pt vô nghiệm
Vậy * \(m\ne\pm1\)pt ( 1 ) có nghiệm duy nhất \(x=\frac{1}{m-1}\)
* \(m=-1\)pt ( 1 ) vô số nghiệm
* \(m=1\)pt ( 1 ) vô nghiệm
\(\left(m^2-1\right)x=m+1\) \(\left(1\right)\)
+) Nếu \(m^2-1\ne0\Leftrightarrow m\ne\pm1\)
Phương trình có nghiệm duy nhất \(x=\frac{m+1}{m^2-1}=\frac{1}{m-1}\)
+) Nếu \(m=1\)
\(\left(1\right)\Leftrightarrow0x=2\) ( vô lí )
+) Nếu \(m=-1\)
\(\left(1\right)\Leftrightarrow0x=0\) ( luôn đúng )
Vậy với \(m\ne\pm1\) phương trình có 1 nghiệm duy nhất \(x=\frac{1}{m-1}\)
với m =1 thì phương trình vô nghiệm
với m = -1 thì phương trình có nghiệm đúng với mọi x
a) 7(m-11)X - 2X + 14 = 5m
<=> ( 7m - 77 - 2 )X = 5m -14
<=> (7m - 79 )X = 5m - 14
TH1: 7m - 79 = 0 <=> m = \(\frac{79}{7}\)
Thay m = \(\frac{79}{7}\), ta có :
0X = 5 x \(\frac{79}{7}\) -14
<=> 0X = \(\frac{297}{7}\)
PT vô nghiệm
TH2: m \(\ne\frac{79}{7}\)
<=> phương trình có nghiệm duy nhất x = \(\frac{5m-14}{7m-79}\)
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)
\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)
\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)
(m+1)^2.x +1-m=(7m-5)x
<=>(m^2+2m+1)x +1 -m =7mx-5x
<=>m^2.x+2m+x+1-m-7mx+5x=0
<=>m^2.x-7mx+6x+1-m=0
<=>m^2.x -7mx+6x=m-1
<=>x(m^2-7m+6)=m-1
<=>x.(m^2-m-6m+6)=m-1
<=>x.[(m^2-m)-(6m-6)]=m-1
<=>x.[m.(m-1)-6.(m-1)]=m-1
<=>x.(m-1).(m-6)=m-1 (1)
với m=1 vào pt (1) ta đc
0x=0
<=> pt vô số nghiệm
với m=6 vào pt (1) ta đc
0x=5 <=> pt vô nghiệm
với m#1 và m#6 ta đc nguy duy nhất của pt là x=\(\frac{m-6}{m-1}\)
kl...........................
đúng thì tích nha