K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2015

Giống thứ tự bạn đã đánh luôn

5 tháng 6 2018

ta có: \(1=\frac{1}{1^2};\frac{1}{4}=\frac{1}{2^2};\frac{1}{9}=\frac{1}{3^2};\frac{1}{16}=\frac{1}{4^2};....\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)( tổng 100 số hạng đầu tiên)

\(\Rightarrow1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                                                  \(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

                                                                                 \(=1+\left(1-\frac{1}{100}\right)=1+1-\frac{1}{100}=2-\frac{1}{100}< 2\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

5 tháng 6 2018

100 số hạng đầu tiên của dãy là 1;1/4;1/9;...;1/10000

A=1+1/2^2+1/3^2+...+1/100^2<1+1/1.2+1/2.3+...+1/99.100=1+1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100=2-1/100<2

a) ta có:  \(1-\frac{2012}{2013}=\frac{1}{2013}\)

                 \(1-\frac{2013}{2014}=\frac{1}{2014}\)

mà \(\frac{1}{2013}>\frac{1}{2014}\) nên   \(\frac{2013}{2014}>\frac{2012}{2013}\)

3 tháng 4 2022

sao giống lớp 4 thế ta

15 tháng 9 2021

5/4 = 15/12

4/3 = 16/12

3/2 = 18/12

2/1 = 24/12

Do 15<16<18<24

--> 5/4<4/3<3/2<2/1

7 tháng 8 2018

Đáp án :

B

7 tháng 8 2018

Đáp án là D nha bạn. Vì 4/3 lớn hơn 1 mà 18/19 lại nhỏ hơn 1!

15 tháng 11 2021

bạ tự là đi minh mới lớp 6 nhá

undefined

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Xét \({u_{n + 1}} - {u_n} = {n^2} + 2n + 1 - {n^2} = 2n + 1\)

Do \(n \in \mathbb{N}* \Rightarrow 2n + 1 > 0 \Rightarrow {u_{n + 1}} > {u_n}\)

I
21 tháng 9 2023

ta có :

\(u_n=n^2\\ =>u_{n+1}=\left(n+1\right)^2\)

ta thấy :\(n^2< \left(n+1\right)^2\) \(n\in N\)*