K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2015

Ta có :

\(9x^2-6x-8=0\)

\(x.\left(9x-6\right)=8\)

Lập bảng xét là xong ok 

6 tháng 8 2021

b)x2-2x+1=4

⇔(x-1)2=4

\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

c)x2-4x+4=9

⇔ (x-2)2=9

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

d)4x2-4x+1=4

⇔ (2x-1)2=4

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)

e)x2-2x-8=0

⇔ x2-4x+2x-8=0

⇔ x(x-4)+2(x-4)=0

⇔(x-4)(x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)

f)9x2-6x-8=0

⇔ 9x2-12x+6x-8=0

⇔ 3x(3x-4)+2(3x-4)=0

⇔ (3x-4)(3x+2)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)

21 tháng 6 2023

a)

`4(x-2)^2 =4`

`<=>(x-2)^2 =1`

`<=>x-2=1` hoặc `x-2=-1`

`<=>x=3` hoặc `x=1`

b)

`5(x^2 -6x+9)=5`

`<=>(x-3)^2 =1`

`<=>x-3=1`hoặc `x-3=-1`

`<=>x=4` hoặc `x=2`

c)

`4x^2 +4x+1=0`

`<=>(2x+1)^2 =0`

`<=>2x+1=0`

`<=>x=-1/2`

d)

`9x^2 +6x+1=2`

`<=>(3x+1)^2 =2`

\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)

21 tháng 6 2023

câu (a), (b) thiếu trường hợp

x - 2 = -1 

và x - 3 = -1

18 tháng 8 2021

a) \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\Rightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\Rightarrow\left(2x-3\right)\left(7x-2x+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-3=0\\5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

b) \(\left(2x-7\right).\left(x-2\right)\left(x^2-4\right)=0\Rightarrow\left(2x-7\right)\left(x-2\right)^2\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}2x-7=0\\\left(x-2\right)^2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c)\(\left(9x^2-25\right)-\left(6x-10\right)=0\Rightarrow\left(3x-5\right)\left(3x+5\right)-2\left(3x-5\right)=0\Rightarrow\left(3x-5\right)\left(3x+5-2\right)=0\Rightarrow\left[{}\begin{matrix}3x-5=0\\3x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=1\end{matrix}\right.\)

a: Ta có: \(7x\left(2x-3\right)-\left(4x^2-9\right)=0\)

\(\Leftrightarrow7x\left(2x-3\right)-\left(2x-3\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(2x-3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{3}{5}\end{matrix}\right.\)

b: Ta có: \(\left(2x-7\right)\left(x-2\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-2\right)^2\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\\x=-2\end{matrix}\right.\)

c: Ta có: \(\left(9x^2-25\right)-\left(6x-10\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+5-2\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)

12 tháng 5 2022

`M=-9x^2+6x-3`

`M=-(9x^2-6x+3)`

`M=-(9x^2-6x+1+2)`

`M=-(3x-1)^2-2`

Vì `-(3x-1)^2 <= 0 AA x`

`<=>-(3x-1)^2-2 <= -2 AA x`

  Hay `M <= -2 AA x`

Dấu "`=`" xảy ra `<=>(3x-1)^2=0<=>3x-1=0<=>x=1/3`

Vậy `GTLN` của `M` là `-2` khi `x=1/3`

12 tháng 5 2022

\(M=-9x^2+6x-3\)

\(M=-\left(9x^2-6x+3\right)\)

\(M=-\left[\left(3x-1\right)^2+2\right]\)

\(M=-\left(3x-1\right)^2-2\)

\(\Rightarrow Max_M=-2\) khi \(3x-1=0\)

                                 \(\Leftrightarrow x=\dfrac{1}{3}\)

Bài 1 Giải các phương trình sau:          a)  x2 + 6x + 8 = 0                   b) 9x2 – 6x + 1 = 0Bài 2. Cho hai hàm số y = 2x2 và y = x + 1a)     Vẽ đồ thì hai hàm số này trên cùng một mặt phẳng tọa độ.b)    Tìm tọa độ giao điểm của hai đồ thị đó.Bài 3 : Cho phương trình x2 + 2x + 2m  = 0 a)     Tìm m để phương trình có hai nghiệm trái dấu.b)    Tìm m để phương trình có...
Đọc tiếp

Bài 1 Giải các phương trình sau:

          a)  x2 + 6x + 8 = 0                   b) 9x2 – 6x + 1 = 0

Bài 2. Cho hai hàm số y = 2x2 và y = x + 1

a)     Vẽ đồ thì hai hàm số này trên cùng một mặt phẳng tọa độ.

b)    Tìm tọa độ giao điểm của hai đồ thị đó.

Bài 3 : Cho phương trình x2 + 2x + 2m  = 0 

a)     Tìm m để phương trình có hai nghiệm trái dấu.

b)    Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn điều kiện 2x1 + x2 = -4.

Bài 4  1. Cho đường tròn tâm O đường kính AB, đường thẳng vuông góc với AB tại O cắt đường tròn tại M , K là một điểm bất kỳ trên cung nhỏ BM. Gọi H là chân đường vuông góc của M xuống AK

a) Chứng minh rằng AOHM là tứ giác nội tiếp

b) Tam giác MHK là tam giác gì? Vì sao?

c) Chứng minh OH là tia phân giác của góc MOK

Bài 5: Tính thể 6 tích của một hình nón có đường cao bằng 8cm và babs kính đường tròn đáy bằng 6cm

2

Bài 1: 

a: \(x^2+6x+8=0\)

=>(x+2)(x+4)=0

=>x=-2 hoặc x=-4

b: \(9x^2-6x+1=0\)

=>(3x-1)2=0

=>3x-1=0

hay x=1/3

9 tháng 5 2022

Câu 1:

a. x+ 6x + 8 = 0

\(\Delta'=3^2-8=1>0\)

Do \(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-3+\sqrt{1}}{1}=-2\)

\(x_2=\dfrac{-3-\sqrt{1}}{1}=-4\)

b. 9x2 - 6x + 1 = 0

\(\Delta'=\left(-3\right)^2-9.1=0=0\)

Do \(\Delta'=0\) nên phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{3}{9}=\dfrac{1}{3}\)

13 tháng 2 2022

\(a,\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ b,4x^2-1=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

\(c,x^2-4x+3=0\\ \Leftrightarrow x^2-3x-x+3=0\\ \Leftrightarrow x\left(x-3\right)-\left(x-3\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

\(d,9x^2-6x+1=0\\ \Leftrightarrow\left(3x-1\right)^2=0\\ \Leftrightarrow3x-1=0\\ \Leftrightarrow x=\dfrac{1}{3}\)

13 tháng 2 2022

\(a\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(\)

26 tháng 12 2019

26 tháng 10 2021

a: \(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

c: \(\Leftrightarrow\left(x-1\right)\left(3x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

26 tháng 10 2021

a) \(x^2-6x=0\\ \Leftrightarrow x\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\Leftrightarrow\left(3x-1-x-5\right)\left(3x-1+x+5\right)=0\\ \Leftrightarrow\left(2x-6\right)\left(4x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

c) \(9x^2\left(x-1\right)=x-1\\ \Leftrightarrow\left(9x^2-1\right)\left(x-1\right)=0\\ \Leftrightarrow\left(3x-1\right)\left(3x+1\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)

d) \(x^2-4=\left(x-2\right)^2\\ \Leftrightarrow\left(x-2\right)\left(x+2-x+2\right)=0\\ \Leftrightarrow4\left(x-2\right)=0\\ \Leftrightarrow x=2\)

e) \(\Leftrightarrow\left(x+3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

f) \(x^3-0,36=0\\ \Leftrightarrow x\left(x^2-0,36\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)

g) \(\Leftrightarrow\left(5x-1\right)\left(x-2018\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2018\end{matrix}\right.\)

h) \(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\\ \Leftrightarrow\left(x-4\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

 

14 tháng 10 2021

\(9x^2-6x+20\)

\(=9x^2-6x+1+19\)

\(=\left(3x-1\right)^2+19>0\forall x\)

21 tháng 9 2021

a. 9x2 - 6x - 3 = 0

<=> 3(3x2 - 2x - 1) = 0

<=> 3(3x2 - 3x + x - 1) = 0

<=> \(3\left[3x\left(x-1\right)+\left(x-1\right)\right]=0\)

<=> 3(3x + 1)(x - 1) = 0

<=> \(\left[{}\begin{matrix}3x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=1\end{matrix}\right.\)

b. (2x + 1)2 - 4(x + 2)2 = 9

<=> (2x + 1)2 - \(\left[2\left(x+2\right)\right]^2=9\)

<=> (2x + 1 - 2x - 4)(2x + 1 + 2x + 4) = 9

<=> -3(4x + 5) = 9

<=> 4x + 5 = -3

<=> 5 + 3 = -4x

<=> -4x = 8

<=> -x = 2

<=> x = -2

21 tháng 9 2021

a) \(\Leftrightarrow\left(9x^2-6x+1\right)-4=0\)

\(\Leftrightarrow\left(3x-1\right)^2-4=0\)

\(\Leftrightarrow3\left(x-1\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\)

\(\Leftrightarrow12x=-24\Leftrightarrow x=-2\)

c) \(\Leftrightarrow3x^2-6x+3-3x^2+15x=21\)

\(\Leftrightarrow9x=18\Leftrightarrow x=2\)

d) \(\Leftrightarrow x^2+6x+9-x^2-4x+32=1\)

\(\Leftrightarrow2x=-40\Leftrightarrow x=-20\)