CÁC BẠN ƠI NHẬN XÉT GIÙM MÌNH VỚI:
NẾU MÌNH MUỐN CHỨNG MINH 3 ĐIỂM ( A,B,C)THẲNG HÀNG THÌ MÌNH CHỨNG MINH ĐIỂM A LÀ TRUNG ĐIỂM CỦA BC ĐƯỢC KO Ạ. (NẾU KO ĐƯỢC THÌ TẠI SAO?)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AE = AD; AD = BC nên AE = BC(1)
DC = AB; DC = CF nên AB = CF (2)
GÓC EAB = BCF (Đồng vị) (3)
Từ (1); (2); (3) -> tgiac EAB = BCF (cgc) -> EB = BF (*)
Mặt khác: GÓC EBA = EFD (đồng vị); ABC = ADC (gt); CBF = AEB (đồng vị)
Cộng vế với vế: EBA + ABC + CBF = EFD + ADC + AEB
Mà EFD + ADC + AEB = 180 độ -> EBA + ABC + CBF = 180 độ (**)
Từ (*); (**) suy ra điểm E đối xứng với điểm F qua điểm B.
Lâu rồi k giải toán, giờ trở lại vs Toán thân iu
Ta có hình vẽ:
a/ Xét tam giác ABD và tam giác CMD có:
AD = DC (vì D là trung điểm AC)
góc ADB = góc CDM (đối đỉnh)
DB = DM (GT)
Vậy tam giác ABD = tam giác CMD (c.g.c)
=> AB = CM (2 cạnh tương ứng)
Ta có: tam giác ABD = tam giác CMD
=> góc BAC = góc MCA (2 góc tương ứng)
b/ Xét tam giác AMD và BCD có:
AD = DC (vì D là trung điểm AC)
góc ADM = góc BDC (đối đỉnh)
DM = DB (GT)
Vậy tam giác AMD = tam giác BCD (c.g.c)
=> góc MAD = góc DCB (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AM // BC (đpcm)
c/ Xét tam giác ABC và tam giác AMC có:
AC: cạnh chung
AB = CM (do tam giác ABD = tam giác CMD)
AM = BC (do tam giác AMD = tam giác BCD)
=> tam giác ABC = tam giác AMC (c.c.c)
d/ Ta có: AB = CM (câu a)
Mà I là trung điểm AB
và K là trung điểm CM
=> AI = IB = MK = KC
Xét tam giác IAD và tam giác KCD có:
AI = CK (đã chứng minh trên)
góc BAC = góc MCA (câu a)
AD = DC (vì D là trung điểm AC)
=> tam giác IAD = tam giác KCD (c.g.c)
=> góc IDA = góc KDC (2 góc tương ứng)
Ta có: \(\widehat{ADM}\)+\(\widehat{MDK}\)+\(\widehat{KDC}\)=1800
=> góc ADM + góc MDK + góc IDA = 1800
=> góc IDK = 1800
hay K,D,I thẳng hàng
Bạn ko thể chứng minh như thế đc nhỡ may B, C cũng ko thẳng hàng thì sao