Cho biểu thức:
K=(-x+y)+(x-z)-(y+11)-2000
Với x,y là số nguyên bất kì
z là số nguyên dương
Hãy chứng tỏ giá trị của biểu thức K luôn là số nguyên âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = ( -x + y - z) - ( y - x ) - ( x- z )
A = -x + y - z - y + x - x + z
A = ( -x + x ) + ( y - y ) - ( z - z )
A = 0 + 0 - 0 = 0
=> ĐPCM
Vậy giá trị của biểu thức A luôn dương
K ĐÚNG CHO MIK ĐÓ NHA MẤY CẬU !
Lời giải:
Ta có:
$A> \frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1(1)$
Mặt khác:
$\frac{x}{x+y}-\frac{x+z}{x+y+z}=\frac{-yz}{(x+y)(x+y+z)}<0$ với mọi $x,y,z$ nguyên dương.
$\Rightarrow \frac{x}{x+y}< \frac{x+z}{x+y+z}$
Hoàn toàn tương tự:
$\frac{y}{y+z}< \frac{x+y}{x+y+z}$
$\frac{z}{z+x}< \frac{z+y}{z+y+x}$
Cộng các BĐT trên lại ta có:
$A< \frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}+\frac{z+x}{x+y+z}=2(2)$
Từ $(1); (2)\Rightarrow 1< A< 2$ nên $A$ không thể có giá trị nguyên.
* C/m : A > 1
Ta có :
\(\frac{x}{x+y}>\frac{x}{x+y+z}\)( vì x > 0 ; 0 < x + y < x + y + z )
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)( vì y > 0 ; 0 < y + z < x + y + z )
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)( vì z > 0 ; 0 < z + x < x + y + z )
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x+y+z}{x+y+z}\Rightarrow A>1\)
* C/m : A < 2
Áp dụng BĐT : \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+n}{b+n}\) ( a,b,n \(\in\)N* )
Với x,y,z \(\in\)N* ta có :
- Vì : 0 < x < x + y \(\Rightarrow\frac{x}{x+y}< 1\Rightarrow\frac{x}{x+y}< \frac{x+z}{x+y+z}\)
- Vì : 0 < y < y + z \(\Rightarrow\frac{y}{y+z}< 1\Rightarrow\frac{y}{y+z}< \frac{x+y}{x+y+z}\)
- Vì : 0 < z < z + x \(\Rightarrow\frac{z}{z+x}< 1\Rightarrow\frac{z}{z+x}< \frac{z+y}{x+y+z}\)
\(\Rightarrow\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}< \frac{x+z}{x+y+z}+\frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}\)
\(\Rightarrow A< \frac{x+z+x+y+y+z}{x+y+z}\Rightarrow A< \frac{2\left(x+y+z\right)}{x+y+z}\Rightarrow A< 2\)
Mà A < 1 => 1 < A < 2 ; 1 và 2 là hai số nguyên liên tiếp
=> A không có giá trị nguyên
Vậy ...
Ta có: \(\frac{x}{x+y}>\frac{x}{x+y+z}\)
\(\frac{y}{y+z}>\frac{y}{x+y+z}\)
\(\frac{z}{z+x}>\frac{z}{x+y+z}\)
\(\Rightarrow A>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)(1)
Lại có: \(\frac{x}{x+y}< \frac{x+y}{x+y+z}\)
\(\frac{y}{y+z}< \frac{y+z}{x+y+z}\)
\(\frac{z}{z+x}< \frac{z+x}{x+y+z}\)
\(\Rightarrow A< \frac{x+y}{x+y+z}+\frac{y+z}{x+y+z}+\frac{z+x}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(2)
Từ (1) và (2) suy ra 1 < A < 2
Vậy A không phải là số nguyên
A = \(\frac{x+y-y}{x+y}+\frac{y+z-z}{y+z}+\frac{z+x-x}{x+z}\)
A=3 \(-\left(\frac{x}{x+z}+\frac{y}{x+y}+\frac{z}{y+z}\right)\)
mà \(\frac{x}{x+z}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A <2 (1)
mặt khác A=\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
mà \(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{x+y+z};\frac{z}{x+z}>\frac{z}{x+y+z}\)
=> A >1 (2)
từ (1) và (2) => 1<A<2 => A ko phải là số nguyên
Ta có: \(K=\left(-x+y\right)+\left(x-z\right)-\left(y+11\right)-2000\)
\(=-x+y+x-z-y-11-2000\)
\(=-z-2011\)
Vì z là số nguyên dương nên -z là số nguyên âm
=> \(-z-2011\) là số nguyên âm
=> Giá trị của biểu thức K luôn là số nguyên âm
Cần chứng minh 2 ý: \(K\in Z\) và K<0
Ta có: K=(-x+y)+(x-z)-(y+11)-2000
=-x+y+x-z-y-11-2000
=-z-2011
Vì z là số nguyên dương nên z > 0=>-z<0
Mà -2011<0
=>-z-2011<0
Hay K<0\(\left(1\right)\)
Ta có:\(z\in Z\)
=>\(-z\in Z\)
Lại có: -2011\(\in Z\)
=>(-z-2011)\(\in Z\)
Hay \(K\in Z\left(2\right)\)
Từ (1) và (2)=> Giá trị biểu thức K luôn là số nguyên âm.