K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

a/ Xét t/g AMB và t/g AMC ta có:

AM: Cạnh chung

AB = AC (gt)

MB = MC (gt)

=> t/g AMB = t/g AMC (c.c.c)(đpcm)

b/+) Vì t/g AMB = t/g AMC (ý a)

=> \(\widehat{BAM}=\widehat{CAM}\)

=> AM là tia phân giác của \(\widehat{BAC}\left(đpcm\right)\)

+) Vì t/g AMB = t/g AMC (ý a)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)

\(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)

=> \(\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)

=> AM \(\perp\) BC (đpcm)

c/ +) Xét t/g AID và t/g CIM có:

AI = CI (gt)

\(\widehat{AID}=\widehat{CIM}\) (đối đỉnh)

ID = IM (gt)

=> t/g AID = t/g CIM (c.g.c)

=> \(\widehat{ADI}=\widehat{CMI}\) (2 góc tương ứng)(1)

+) Chứng ming tương tự ta có:

t/g AIM = t/g CID (c.g.c)

=> \(\widehat{AMI}=\widehat{CDI}\) (2 góc tương ứng)(2)

Từ (1) và (2)

=> \(\widehat{ADI}+\widehat{CDI}=\widehat{CMI}+\widehat{AMI}\)

hay \(\widehat{ADC}=\widehat{AMC}=90^o\)

Vậy \(\widehat{ADC}=90^o\)

3 tháng 1 2017

a+b) Xét t/g AMB và t/g AMC có:

AB = AC (gt)

AM là cạnh chung

MB = MC (gt)

Do đó, t/g AMB = t/g AMC (c.c.c) (đpcm)

=> BAM = CAM (2 góc tương ứng) => AM là phân giác BAC (đpcm)

t/g AMB = t/g AMC (cmt) => AMB = AMC (2 góc tương ứng)

Mà AMB + AMC = 180o ( kề bù)

=> AMB = AMC = 90o

=> AM _|_ BC (đpcm)

c) Xét t/g AID và t/g CIM có:

AI = CI (gt)

AID = CIM ( đối đỉnh)

ID = IM (gt)

Do đó, t/g AID = t/g CIM (c.g.c)

=> AD = CM (2 cạnh tương ứng)

IAD = ICM (2 góc tương ứng)

T/g DAC = t/g MCA (c.g.c)

=> ADC = CMA = 90o (2 góc tương ứng)

a) Xét ∆AMB và ∆AMC có : 

BM =  MC ( M là trung điểm BC )

AM chung 

AB = AC 

=> ∆AMB = ∆AMC (c.c.c)

b) Vì AB = AC 

=> ∆ABC cân tại A 

Mà AM là trung tuyến 

=> AM \(\perp\)BC 

Mà a\(\perp\)AM 

=> a//BC ( từ vuông góc tới song song )

c) Vì CN//AM (gt)

AN//MC ( a//BC , M thuộc BC)

=> ANCM là hình bình hành 

=> NC = AM , AN = MC

Mà AMC = 90° 

=> ANCM là hình chữ nhật 

=> NAM = AMC = MCN =  CNA = 90° 

Xét ∆ vuông NAC và ∆ vuông MCA có : 

AN = MC

AM = CN

=> ∆NAC = ∆MCA (ch-cgv)

d) Vì ANCM là hình chữ nhật (cmt)

=> AC = MN , I là trung điểm 2 đường chéo NM và AC (dpcm)

10 tháng 11 2016

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

30 tháng 12 2018

xét tam giác AMB và tam giác AMC có:

MA chung

AB=AC (giả thiết)

MC=MB(M trung điểm BC)

Nên tam giác AMB=tam giác AMC(c.c.c)

b, Từ chứng minh a 

=> góc MAB = góc MAC và AM nằm giữa AB và AC

=> AM là tia phân giác của góc BAC

c,Từ chứng minh a => góc AMB= góc AMC mà 2 góc này có tổng bằng 180 độ

=> góc AMB=góc AMC=180 độ :2=90 độ

Ta có: đường vuông góc với BA (bạn nên đặt tên đây chỉ là gọi tổng quát) 

Và AM vuông góc BC ( chứng minh trên)

Và AM cắt đường vuông góc BC tại I

=> I là trọng tâm tam giác ABC

=> CI vuông góc CA

9 tháng 12 2022

A)Xét tam giác AMB và tam giác ABC có

BM=MC (gt)

AB=AC (gt)

AM là cạnh chung

Vậy tam giác AMB =tam giác MAC(c.c.c)

Vì tam giác AMB = tam giác AMC 

Suy ra góc AMB=góc AMC

TA có góc AMB+góc AMC = 180 độ (2 góc kề bù)

Suy ra góc AMB= góc AMC=90 độ

Suy ra Am vuông góc với BC

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá

 

a: Xét ΔAMB và ΔAMC có 

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét tứ giác ANMC có 

I là trung điểm của AM

I là trung điểm của NC

Do đó: ANMC là hình bình hành

Suy ra: AN//MC

hay AN//BC

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó:ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

nên \(\widehat{BAM}=\widehat{CAM}\)

hay AM là tia phân giác của \(\widehat{BAC}\)

c: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(2)

từ (1) và (2) suy ra AM là đường trung trực của BC

6 tháng 9 2021

Cho mik cảm ơn

a: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

b: Xét tứ giác ANMC có 

I là trung điểm của AM

I là trung điểm của CN

Do đó: ANMC là hình bình hành

Suy ra: AN//MC

hay AN//BC

c: Xét tứ giác ABMK có

I là trung điểm của BK

I là trung điểm của AM

Do đó: ABMK là hình bình hành

Suy ra: AK//BM

hay AK//BC

mà AN//BC

và AN,AK có điểm chung là A

nên A,N,K thẳng hàng