Ax//Cy . Tính góc A+B+C
A x B C y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ Bz//Ax//Cy
\(\Rightarrow\widehat{ABC}=\widehat{ABz}+\widehat{zBC}\\ =\left(180^0-\widehat{xAB}\right)+\left(180^0-\widehat{yCB}\right)\left(trong.cùng.phía\right)\\ =50^0+32^0=82^0\)
a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
\(1.\)
Theo đề ra, ta có:
\(ax+by=c\)
\(bx+cy=a\Leftrightarrow ax+by+bx+cy+cx+ay=c+a+b\)
\(cx+by=b\)
\(\Leftrightarrow x\left(a+b+c\right)+y\left(a+b+c\right)=a+b+c\)
\(\Leftrightarrow\left(x+y-1\right)\left(a+b+c\right)=0\)
Ta có: \(x,y\)thỏa mãn \(\Rightarrow a+b+c=0\Rightarrow a+b=\left(-c\right)\)
Khi đó ta có:
\(a^3+b^3+c^3=a^3+3ab\left(a+b\right)+b^3-3ab\left(a+b\right)+c^3\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3=\left(-c\right)^3-3ab\left(-c\right)+c^3=3abc\)\(\left(đpcm\right)\)
MIk gửi link ảnh rồi
k mik nha
Chỉ cần thay chữ vào thôi
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{ax-by}{c}=\frac{bz-cx}{a}=\frac{cy-az}{b}\)\(=\frac{axz-byz}{cz}\)\(=\frac{bzy-cxy}{ay}\)\(=\frac{cyx-azx}{bx}\)\(=\frac{axz-byz+bzy-cxy+cyx-azx}{cz+ay+bx}\)\(=0\)
+) \(\frac{axz-byz}{cz}=0\Rightarrow axz-byz=0\Rightarrow axz=byz\Rightarrow\)\(ax=by\Rightarrow\frac{x}{b}=\frac{y}{a}\)(1)
+) \(\frac{bzy-cxy}{ay}=0\Rightarrow bzy-cxy=0\)\(\Rightarrow bzy=cxy\Rightarrow bz=cx\Rightarrow\frac{z}{c}=\frac{x}{b}\)(2)
Từ (1) và (2) suy ra: \(\frac{x}{b}=\frac{y}{a}=\frac{z}{c}\)(đpcm).
A B C Y X Z
kẻ BZ//CY//AX
=>ZBC+BCY=180O
XAB+ABZ=180O
=>XAB+ABZ+ZBC+BCY=A+B+C=360O