Số các số tự nhiên thỏa mãn
. N là......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Để 4n - 1 chai hết cho 7
Thì 4n - 1 thuộc B(7) = {0;7;14;21;28;35;42;................}
Suy ra 4n = {1;8;15;22;29;36;43;50;57;......................}

Ta có
\(\frac{4^{n+3}+17.2^{2n}}{9^{n+1}+7.3^{2n}}=\frac{2^{2n+6}+17.2^{2n}}{3^{2n+2}+7.3^{2n}}=\frac{2^{2n}.\left(2^6+17\right)}{3^{2n}.\left(3^2+7\right)}=\left(\frac{2}{3}\right)^{2n}.\frac{81}{16}=1\)
\(\Rightarrow\left(\frac{2}{3}\right)^{2n}.\frac{3^4}{2^4}=1\Rightarrow\left(\frac{2}{3}\right)^{2n}=\left(\frac{2}{3}\right)^4\Rightarrow2n=4\Rightarrow n=2\)

Hôm nay olm.vn sẽ hướng dẫn các em cách giải phương trình nghiệm nguyên bằng nguyên lí kẹp. Cấu trúc đề thi hsg, thi chuyên thi violympic.
(3n + 1)2 = 9n2 + 2n + 1 < 9n2 + 3n + 4 \(\forall\) n \(\in\) N (1)
(3n + 2)2 = (3n + 2).(3n +2) = 9n2 + 12n + 4
⇒(3n + 2)2 ≥ 9n2 + 3n + 4 \(\forall\) n \(\in\) N (2)
Kết hợp (1) và (2) ta có: (3n +1)2 < 9n2 + 3n + 4 ≤ (3n + 2)2
Vì (3n + 1)2 và (3n +2)2 là hai số chính phương liên tiếp nên
9n2 + 3n + 4 là số chính phương khi và chỉ khi:
9n2 + 3n + 4 = (3n + 2)2 ⇒ 9n2 + 3n + 4 = 9n2 + 12n + 4
9n2 + 12n + 4 - 9n2 - 3n - 4 = 9n = 0 ⇒ n = 0
Vậy với n = 0 thì 9n2 + 3n + 4 là số chính phương.

2) Để n + 6/15 là số tự nhiên thì n + 6 chia hết cho 15 => n + 6 chia hết cho 3 (1)
Để n + 5/18 là số tự nhiên thì n + 5 chia hết cho 18 => n + 5 chia hết cho 3 (2)
Từ (1) và (2) => (n + 6) - (n + 5) chia hết cho 3
=> 1 chia hết cho 3 (vô lý !)
Vậy không tồn tại n để n + 6/15 và n + 5/18 đồng thời là các số tự nhiên


Ta có :
(n+13) : (n-2)
= (n - 2 + 15) : (n-2)
= (n-2) : (n-2) + 15 : (n-2)
= 1 + 15 : (n - 2) (1)
Để n + 13 chia hết cho (n-2) thì (1) phải thuộc Z, 1 luôn là số nguyên, 15 : (n - 2) là nguyên khi n - 2 thuộc Ư(15)
Mà: Ư(15) = {1;3;5;15}
. n - 2 = 1
=>n = 1 + 2 = 3
n - 2 = 3
=>n = 3 + 2 = 5
n - 2 = 5
=>n = 5 + 2 = 7
n - 2 = 15
=>n = 15 + 2 = 17
Vậy khi n \(\in\) {3;5;7;17} thì (n + 13) chia hết (n - 2)

3n+10 chia hết n-1
=> 3n-3+13 chia hết n-1
=> 3.(n-1)+13 chia hết n-1
Mà 3(n-1) chia hết n-1
=> 13 chia hết n-1
=> n-1 \(\in\)Ư(13)={1; 13}
=> n \(\in\){2; 14}
2 giá trị