cho\(a^3+b^3=c^3\)
so sanh \(a^{2007}+b^{2007};c^{2007}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2006}=1-\frac{1}{2007}+1-\frac{1}{2008}+1+\frac{2}{2006}.\)
\(A=3+\left(\frac{1}{2006}-\frac{1}{2007}\right)+\left(\frac{1}{2006}-\frac{1}{2008}\right)>3\)
Vậy A>3
A>b
Cách làm: Bạn tách |B ra rồi so sánh với từng ps ở A, sau đó Kết luận
\(A=\frac{2006+2007}{2006.2007}=\frac{2006}{2006.2007}+\frac{2007}{2006.2007}=\frac{1}{2007}+\frac{1}{2006}\)
\(B=\frac{2007+2008}{2007.2008}=\frac{2007}{2007.2008}+\frac{2008}{2007.2008}=\frac{1}{2008}+\frac{1}{2007}\)
Vì \(\frac{1}{2007}+\frac{1}{2006}>\frac{1}{2008}+\frac{1}{2007}\)
=> \(A>B\)
nhờ nguyễn huy hải trả lời í cậu í giỏi lắm
thì bài bạn đăng là lớp 5 hay 6 nên bạn ý làm được thử hỏi bài lớp 7,8 coi
những người giỏi á chẳng biết đi đâu mất tiêu rùi