Với giá trị nao cua x thì x2-5x+4<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài thì ta có:
\(\hept{\begin{cases}3x_1^2+5x_1+4-m=0\\x_2^2-5x_2+4+m=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}9x_1^2+15x_1+12-3m=0\left(1\right)\\x_2^2-5x_2+4+m=0\left(2\right)\end{cases}}\)
Lấy (1) - (2) ta được
\(\left(9x_1^2-x_2^2\right)+\left(15x_1+5x_2\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1-x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(3x_1+x_2\right)\left(3x_1+x_2-2x_2+5\right)+8-4m=0\)
\(\Leftrightarrow\left(6-2x_2\right)+8-4m=0\)
\(\Leftrightarrow x_2=7-2m\)
Thế lại vô (2) ta được
\(\left(7-2m\right)^2-5\left(7-2m\right)+4+m=0\)
\(\Leftrightarrow4m^2-17m+18=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=2\\m=\frac{9}{4}\end{cases}}\)
2. -x2 + x - 33 = -x2 + x - 1/4 - 131/4 = -( x2 - x + 1/4 ) - 131/4 = -( x - 1/2 )2 - 131/4
-( x - 1/2 )2 ≤ 0 ∀ x => -( x - 1/2 )2 - 131/4 ≤ -131/4 < 0 ∀ x ( đpcm )
3. x2 + 4x + 33 = x2 + 4x + 4 + 29 = ( x + 2 )2 + 29
( x + 2 )2 ≥ 0 ∀ x => ( x + 2 )2 + 29 ≥ 29 > 0 ∀ x ( đpcm )
4. x2 + 8x = x2 + 8x + 16 - 16 = ( x + 4 )2 - 16
( x + 4 )2 ≥ 0 ∀ x => ( x + 4 )2 - 16 ≥ -16 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
Vậy GTNN của biểu thức = -16, đạt được khi x = -4
x có 2 trường hợp:
1)4-5x=24 2)4-5x=-24
5x=4-24 5x=4-(-24)
5x=-20 5x=28
x=-20:5 x=28:5
x=-4 x=5,6
vậy x=-4 hoặc 5,6
I6-lx+2II>=0 => 5x-9>=0 =>5x>=9 => x>=1.8
=>x+2 >0
=> lx+2l=x+2
=>l6-lx+2ll= l6-(x+2)l = l4-xl
=>l4-xl= 5x-9
(+) TH1: 4-x=5x-9
=>6x=13=>x=13/6(t/m)
(+) TH2: -(x-4)=5x-9
=>x-4=5x-9
=>4x=5
=>x=5/4 ( loại vì 5/4 <2)
Vậy x = 13/6
Nhưng như t nói ở trên, 13/6 không thỏa mãn điều kiện x >= 4 mà nhỉ :<
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Đặt \(x^2-5x+4=A\)
\(A=x^2-5x+4=\left(x^2-2\times x\times\frac{5}{2}+\frac{25}{4}\right)-2,25\)
\(=\left(x-\frac{5}{2}\right)^2-2,25\)
Khi A < 0
\(\Rightarrow\left(x-\frac{5}{2}\right)^2< 2,25\)
\(\Leftrightarrow1< x< 4\)
Vậy khi 1 < x < 4 thì A < 0
thank you