1) Tìm Max: A = \(\sqrt{ }\)x-1 + \(\sqrt{ }\)y-2
Biết x + y = 4
2) Tìm Max B = \(\sqrt{ }\)x-1 / x + \(\sqrt{ }\)y-2 / y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2
= 4/9 .y.y.y . (3/2-3/2.y)^2
=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)
<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5
=4/9 . 243/3125
=108/3125
Đến đó tự giải
\(1,yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)\cdot1}\le yz\cdot\dfrac{x-1+1}{2}=\dfrac{xyz}{2}\)
\(zx\sqrt{y-2}=\dfrac{zx\cdot2\sqrt{2\left(y-2\right)}}{2\sqrt{2}}\le\dfrac{xyz}{2\sqrt{2}}\\ xy\sqrt{z-3}=\dfrac{xy\cdot2\sqrt{3\left(z-3\right)}}{2\sqrt{3}}\le\dfrac{xyz}{2\sqrt{3}}\)
\(\Leftrightarrow M\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{xyz\left(\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\right)}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=2\\z-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)
\(2,N^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\\ \Leftrightarrow N^2\le\left(a+b+b+c+c+a\right)\left(1^2+1^2+1^2\right)\\ \Leftrightarrow N^2\le6\left(a+b+c\right)=6\sqrt{2}\\ \Leftrightarrow N\le\sqrt{6\sqrt{2}}\)
Dấu \("="\Leftrightarrow a=b=c=\dfrac{\sqrt{2}}{3}\)
a) Tìm min max A = \(\frac{4x+3}{x^2+1}\)
b) Cho x + y = 15 Tìm min max B = \(\sqrt{x-4}+\sqrt{y-3}\)
Ta có BĐT sau: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)(*)
Thật vậy: (*)\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Áp dụng, ta được: \(\left(\sqrt{x^2+1}+\sqrt{2x}\right)^2\le2\left(x^2+1+2x\right)=2\left(x+1\right)^2\)
\(\Rightarrow\sqrt{x^2+1}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)(1)
Tương tự, ta có: \(\sqrt{y^2+1}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)(2); \(\sqrt{z^2+1}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)(3)
Theo BĐT Cauchy-Schwarz, ta được: \(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le\left(1+1+1\right)\left(x+y+z\right)\)
\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\)
\(\Rightarrow\left(2-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)(Nhân 2 vế của bất đẳng thức với \(2-\sqrt{2}>0\)) (4)
Cộng theo vế của 4 BĐT (1), (2), (3), (4), ta được:
\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)-\left(\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\right)\)\(\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\)
\(\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)(Do theo giả thiết thì \(x+y+z\le3\))
hay \(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le6+3\sqrt{2}\)
Đẳng thức xảy ra khi x = y = z = 1
Vậy giá trị lớn nhất của biểu thức là \(6+3\sqrt{2}\), đạt được khi x = y = z = 1
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
1) ĐK: x \(\ge\)1; y \(\ge\)2
Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}\le\)\(\sqrt{\frac{a+b}{2}}\) (cho 2 sô a;b > 0) ta co:
\(\frac{A}{2}\le\sqrt{\frac{x-1+y-2}{2}}=\sqrt{\frac{4-3}{2}}=\sqrt{\frac{1}{2}}\)
\(A=\sqrt{\frac{1}{2}}.2=\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1=y-2\\x+y\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=\frac{3}{2}\\y=\frac{5}{2}\end{matrix}\right.\)
2) ĐK: x \(\ge\)1; y \(\ge\)2
Áp dụng bđt AM-GM cho 2 số dương ta có:
\(\frac{\sqrt{x-1}}{x}=\frac{\sqrt{1.\left(x-1\right)}}{x}\le\frac{1+x-1}{2x}=\frac{1}{2}\)
\(\frac{\sqrt{y-2}}{y}=\frac{\sqrt{2.\left(y-2\right)}}{\sqrt{2}.y}\le\frac{2+y-2}{\sqrt{2}.2y}=\frac{1}{\sqrt{2}.2}\)
\(B=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}\)\(\le\frac{1}{2}+\frac{1}{\sqrt{2}.2}=\frac{2}{4}+\frac{\sqrt{2}}{4}=\frac{2+\sqrt{2}}{4}\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1=1\\y-2=2\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x=2\\y=4\end{matrix}\right.\)