\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\) Rút gọn biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\sqrt{2}.A=\sqrt{\dfrac{4+2\sqrt{3}}{2}}-\sqrt{\dfrac{4-2\sqrt{3}}{2}}\)
= \(\sqrt{\dfrac{\left(1+\sqrt{3}\right)^2}{2}}-\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{2}}\)
= \(\dfrac{1+\sqrt{3}}{\sqrt{2}}-\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}\)
<=> A = 1
\(\frac{\sqrt{2-\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right).\)
\(=\frac{2\sqrt{2-\sqrt{3}}}{4}:\left(\frac{2\sqrt{2+\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{2\sqrt{2+\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{4}:\left(\frac{\sqrt{4+2\sqrt{3}}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{4+2\sqrt{3}}}{4\sqrt{3}}\right)\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{4}:\left[\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4}-\frac{2}{\sqrt{6}}+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{4\sqrt{3}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\left[\frac{\sqrt{6}\left(\sqrt{3}+1\right)}{4\sqrt{6}}-\frac{2.4}{4\sqrt{6}}+\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{4\sqrt{6}}\right]\)
\(=\frac{\sqrt{3}-1}{4}:\frac{\sqrt{18}+\sqrt{6}-8+\sqrt{6}+\sqrt{2}}{4\sqrt{6}}\)
\(=\frac{\sqrt{3}-1}{4}.\frac{4\sqrt{6}}{\sqrt{2}\left(\sqrt{9}+2\sqrt{3}+1\right)}\)
\(=\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{2}\left(\sqrt{3}+1\right)^2}=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)^2}\)............
A=\(\sqrt{2}\), cái kết quả này bấm máy tính là ra được, quan trọng là phải làm thế nào để ra
bài này dễ bn, bn nhân vs biểu thức liên hợp ở mẫu là ra nka, mik ko bt viết mấy kí tự trên này nên ko hướng dẫn ra cụ thể đc
Gọi biểu thức là A
=>A*\(\sqrt{2}\)=\(\frac{\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}\)+\(\frac{\sqrt{6}}{2-\sqrt{4-2\sqrt{3}}}\)=\(\frac{\sqrt{6}}{2+\sqrt{\left(1+\sqrt{3}\right)^2}}\)+\(\frac{\sqrt{6}}{2+\sqrt{\left(\sqrt{3}-1\right)^2}}\)=\(\frac{\sqrt{6}}{2+1+\sqrt{3}}\)+\(\frac{\sqrt{6}}{2-\sqrt{3}+1}\)
=\(\frac{6\sqrt{6}}{4-\left(\sqrt{3}-1\right)^2}\)
=\(\frac{6\sqrt{6}}{-2\sqrt{3}}\)=-3\(\sqrt{2}\)
=>A=-3
bạn đặt A=biểu thức rồi tính \(\frac{1}{\sqrt{2}}A\) là ra
\(M=\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{2-\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{5}+1}+\frac{2-\sqrt{5}}{2-\sqrt{5}-1}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{3+\sqrt{5}}+\frac{2-\sqrt{5}}{1-\sqrt{5}}\)
P/s làm tiếp nha , hình như bạn ghi đề sai dấu
\(A=\frac{\sqrt{3}-1}{1+\sqrt{1+\frac{\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{1-\frac{\sqrt{3}}{2}}}=\frac{\sqrt{3}-1}{1+\sqrt{\frac{2+\sqrt{3}}{2}}}+\frac{\sqrt{3}+1}{1-\sqrt{\frac{2-\sqrt{3}}{2}}}\)
\(=\frac{\sqrt{3}-1}{1+\frac{\sqrt{4+2\sqrt{3}}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{4-2\sqrt{3}}}{2}}=\frac{\sqrt{3}-1}{1+\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{2}}+\frac{\sqrt{3}+1}{1-\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}}\)
\(=\frac{\sqrt{3}-1}{\frac{3+\sqrt{3}}{2}}+\frac{\sqrt{3}+1}{\frac{3-\sqrt{3}}{2}}=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}+1\right)}+\frac{2\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}\)
\(=\frac{2}{\sqrt{3}}\left(\frac{4-2\sqrt{3}+4+2\sqrt{3}}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)=\frac{2}{\sqrt{3}}.\frac{8}{2}=\frac{8}{\sqrt{3}}=\frac{8\sqrt{3}}{3}\)
\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)
\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)
\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)
\(=14\)
\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)
\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)
\(=1+\sqrt{2}\)
HÌNH NHƯ = 1,414213562 NHA tịch thiên du phong !
K VÀ KB NHA
\(\frac{S}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
=\(\frac{2+\sqrt{3}}{2+1+\sqrt{3}}+\frac{2-\sqrt{3}}{2+1-\sqrt{3}}\) =\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
=\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{6}\) =\(\frac{6}{6}=1\)
SUY RA S=\(\sqrt{2}\)
\(\sqrt{\frac{2}{2-\sqrt{3}}}-\sqrt{\frac{2}{2+\sqrt{3}}}\)
\(=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{4-3}}-\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4-3}}\)
\(=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|\)
\(=\sqrt{3}+1-\sqrt{3}+1\)( \(\sqrt{3}+1>0\) và \(\sqrt{3}-1>0\) )
\(=2\)
\(\)
\(\sqrt{2\left(2+\sqrt{3}\right)}-\sqrt{2\left(2-\sqrt{3}\right)}\))
\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(1+\sqrt{3}-\sqrt{3}+1\)
\(2\)
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}=\sqrt{\frac{\left(2-\sqrt{3}\right)^2}{4-3}}+\sqrt{\frac{\left(2+\sqrt{3}\right)^2}{4-3}}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{2.2+2.\left(-\sqrt{3}\right)-\sqrt{3}.2-\sqrt{3}.\left(-\sqrt{3}\right)}{2^2-\left(\sqrt{3}\right)^2}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{4-2\sqrt{3}-2\sqrt{3}-\sqrt{3}.\left(-\sqrt{3}\right)}{4-3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{4-2\sqrt{3}-2\sqrt{3}+\left(\sqrt{3}\right)^1\left(\sqrt{3}\right)^1}{4-3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{4-2\sqrt{3}-2\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{7-4\sqrt{3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{\frac{4+2\sqrt{3}+\sqrt{3}.2+\sqrt{3.3}}{4-3}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{4+2\sqrt{3}+2\sqrt{3}+\sqrt{9}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{3}+2\)
\(\Leftrightarrow2+2\)
\(\Leftrightarrow4\)
PS : bài này dài lắm, có đọan nào không hiểu hỏi mình nhé. Nhớ k để ủng hộ ạ :33
# Aeri #