K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

\(\sqrt[3]{x+2}+\sqrt[3]{x-2}=\sqrt[3]{5x}\)

<=> \(x+2+x-2+3\sqrt[3]{x+2}.\sqrt[3]{x-2}\left(\sqrt[3]{x+2}+\sqrt[3]{x-2}\right)=5x\)

<=> \(2x+3\sqrt[3]{x^2-4}.\sqrt[3]{5x}=5x\)<=> \(3\sqrt[3]{5x\left(x^2-4\right)}=3x\)

<=> \(\sqrt[3]{5x\left(x^2-4\right)}=x\)<=> \(5x^3-20x=x^3\)

<=> \(4x^3-20x=0\)<=>\(4x\left(x^2-5\right)=0\)<=> \(\hept{\begin{cases}x=0\\x^2-5=0\end{cases}}\)

<=> x = 0 ; x =\(\sqrt{5}\); x = - \(\sqrt{5}\)

Vậy pt có tập nghiệm \(S=\left\{-\sqrt{5};0;\sqrt{5}\right\}\)

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

30 tháng 7 2021

Dòng thứ 2 qua dòng thứ 3 anh làm chậm lại được không ạ, tại tắt quá e không hiểu

NV
27 tháng 12 2020

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-1}+\sqrt{x+3}-\sqrt{\left(x-2\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2}-1\right)-\sqrt{x+3}\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{x+3}\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{x+3}\\\sqrt{x-2}=1\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

NV
9 tháng 3 2020

a/ ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow\sqrt{x+1}-1+\sqrt{x+4}-2>0\)

\(\Leftrightarrow\frac{x}{\sqrt{x+1}+1}+\frac{x}{\sqrt{x+4}+2}>0\)

\(\Leftrightarrow x>0\)

b/

Chắc bạn ghi nhầm đề, thấy đề hơi kì lạ

c/ ĐKXĐ: \(\left[{}\begin{matrix}-\frac{3}{2}\le x\le\frac{3-\sqrt{57}}{8}\\x\ge\frac{3+\sqrt{57}}{8}\end{matrix}\right.\)

\(\Leftrightarrow2x+3>4x^2-3x-3\)

\(\Leftrightarrow4x^2-5x-6< 0\) \(\Rightarrow-\frac{3}{4}< x< 2\)

Kết hợp ĐKXĐ ta được nghiệm của BPT: \(\left[{}\begin{matrix}-\frac{3}{4}< x\le\frac{3-\sqrt{57}}{8}\\\frac{3+\sqrt{57}}{8}\le x< 2\end{matrix}\right.\)

d/

\(\Leftrightarrow x^2+5x+28-5\sqrt{x^2+5x+28}-24< 0\)

Đặt \(\sqrt{x^2+5x+28}=t>0\)

\(\Leftrightarrow t^2-5t-24< 0\) \(\Rightarrow-3< t< 8\)

\(\Rightarrow t< 8\Rightarrow\sqrt{x^2+5x+28}< 8\)

\(\Leftrightarrow x^2+5x-36< 0\Rightarrow-9< x< 4\)

16 tháng 6 2019

\(\sqrt{x^2-\frac{1}{4}-\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)    (ĐK: \(x\ge\frac{-1}{2}\) )

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[2x\left(x^2+1\right)+\left(x^2+1\right)\right]\)

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-x-\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

\(\Leftrightarrow2x+1=\left(x^2+1\right)\left(2x+1\right)\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x+1\right)-\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2+1-1\right)=0\)

\(\Leftrightarrow x^2\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=0\end{cases}}\) (nhận)

Vậy .....

16 tháng 6 2019

\(\sqrt{x^2-\frac{1}{4}-\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left[x^2\left(2x+1\right)+2x+1\right]\)

\(\Leftrightarrow\sqrt{x^2-\frac{1}{4}-\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)(1) 

Vì VT > 0 nên VP >0

\(\Leftrightarrow\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\ge0\)

\(\Leftrightarrow x\ge-\frac{1}{2}\)

Khi đó \(\left(1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}-x-\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

                    \(\Leftrightarrow\sqrt{x^2-x-\frac{3}{4}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

                    \(\Leftrightarrow x^2-x-\frac{3}{4}=\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)^2\)

                   \(\Leftrightarrow\left(2x-3\right)\left(2x+1\right)-\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)^2=0\)

                 \(\Leftrightarrow\left(2x+1\right)\left(2x-3-\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)\right)=0\)

                \(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\2x-3=\frac{1}{4}\left(x^2+1\right)^2\left(2x+1\right)\end{cases}}\)

 Cần cù bù thông minh , phá tung pt dưới ra được cái phương trình bậc 5, sau đó dùng Wolfram|Alpha: Computational Intelligence để tính nghiệm rồi phân tích nhân tử =))

10 tháng 11 2017

\(x^2-2-2\sqrt{4x-7}=0\)

\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(4x^2-5x+1+2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)

\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)

\(\Rightarrow x=1\)

. . .

\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)

\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)

Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)

Đến đây lập bảng xét dấu

. . .

\(x^2-x+2=2\sqrt{x^2-x+1}\)

\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)

Tự làm tiếp nhé.

10 tháng 11 2017

\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)

\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)

\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)

\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)

\(\Rightarrow x=5\)

. . .

\(\sqrt{2x^2-4x+5}-x+4=0\)

\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)

Tự làm tiếp nhé.

. . .

\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)

\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)

\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)

\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)

\(\Leftrightarrow x^2+5x-6=1\)

Tự làm tiếp nhé.

. . .

\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)

\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)

Tự làm tiếp nhé.

16 tháng 12 2021

ĐKXĐ: ...

\(\sqrt{x^2-x-30}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)

\(\Leftrightarrow\sqrt{\left(x+5\right)\left(x-6\right)}-3\sqrt{x+5}-2\sqrt{x-6}=-6\)(*)

đặt \(\sqrt{x+5}=a\ge0;\sqrt{x-6}=b\ge0\)

\(\text{pt(*)}\Leftrightarrow ab-3a-2b=-6\\ \Leftrightarrow\Leftrightarrow ab-3a-2b+6=0\\ \Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\\ \Leftrightarrow\left(a-2\right)\left(b-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=2\\\sqrt{x-6}=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+5=4\\x-6=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=15\left(tm\right)\end{matrix}\right.\)

3 tháng 11 2019

ĐK:\(x\ge3\)

PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)

Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.