tìm giá trị lớn nhất , nhỏ nhất của hàm số y=|2sin4x.cos4x|+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn nên đưa hàm số về dạng y=|sin8x| +3 rồi mới đánh giá
ta bắt đầu từ \(0\le\left|sin8x\right|\le1\)
\(\Leftrightarrow0+3\le y=\left|sin8x\right|+3\le1+3\)
\(3\le y\le4\)
vậy GTLN =4 đạt được khi sin8x =1
GTNN=3 đạt được khi sin8x =0
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Ta có: 0 ≤ sin 2 x ≤ 1 ⇒ 1 ≤ 4 - 3 sin 2 x ≤ 4
* y = 1 ⇔ sin 2 x = 1 ⇔ cos x = 0 ⇔ x = π 2 + k π
* y = 4 ⇔ sin 2 x = 0 ⇔ x = k π
Vậy giá trị lớn nhất của hàm số bằng 4, giá trị nhỏ nhất bằng 1.
Chọn B
0 ≤ |sinx| ≤ ln n - 2 ≤ -2|sinx| ≤ 0
Vậy giá trị lớn nhất của y = 3 - 2|sin x| là 3, đạt được khi sin x = 0; giá trị nhỏ nhất của y là 1, đạt được khi sinx = 1 hoặc sinx = -1