K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2016

Ta có \(f\left(x\right)=ax^2+bx^4+x+3+11\)

\(=>f\left(-2\right)=a\left(-2\right)^2+b\left(-2\right)^4+\left(-2\right)+3+11=3\)

\(=>f\left(-2\right)=4a+16b+12=3\)

Ta có \(f\left(2\right)=a\left(2^2\right)+b\left(2^4\right)+2+3+11\)

\(=>f\left(2\right)=4a+16b+16\)

\(=>f\left(2\right)=4a+16b+12+4\)

\(f\left(-2\right)=4a+16b+12=3\)

\(=>f\left(2\right)=4a+16b+12+4\)

\(=>f\left(2\right)=3+4\)

\(=>f\left(2\right)=7\)

20 tháng 7 2021

Bài 1 : làm tương tự với bài 2;3 nhé

Ta có : \(f\left(0\right)=c=2010;f\left(1\right)=a+b+c=2011\)

\(\Rightarrow f\left(1\right)=a+b=1\)

\(f\left(-1\right)=a-b+c=2012\Rightarrow f\left(-1\right)=a-b=2\)

\(\Rightarrow a+b=1;a-b=2\Rightarrow2a=3\Leftrightarrow a=\dfrac{3}{2};b=\dfrac{3}{2}-2=-\dfrac{1}{2}\)

Vậy \(f\left(-2\right)=4a-2b+c=\dfrac{4.3}{2}-2\left(-\dfrac{1}{2}\right)+2010=6+1+2010=2017\)

20 tháng 7 2021

Bài 1 : 

\(P\left(0\right)=d=2017\)

\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)

\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)

\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)

Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)

Thay vào (*) ta được \(a+c=4\)(***)

Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****) 

(***) => \(8a+8c=32\)(*****)

Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)

Vậy  ....

20 tháng 7 2021

MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP LẮM Ạ.

NV
20 tháng 3 2021

1.

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{2x}{x\left(\sqrt{x+2}+\sqrt{2-x}\right)}=\lim\limits_{x\rightarrow0}\dfrac{2}{\sqrt{x+2}+\sqrt{2-x}}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

Vậy cần bổ sung \(f\left(0\right)=\dfrac{\sqrt{2}}{2}\) để hàm liên tục tại \(x=0\)

2.

a. \(f\left(0\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x+\dfrac{3}{2}\right)=\dfrac{3}{2}\)

\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt{x+1}-1}{\sqrt[3]{1+x}-1}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1\right)}{x\left(\sqrt[]{x+1}+1\right)}\)

\(=\lim\limits_{x\rightarrow0^+}\dfrac{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}{\sqrt[]{x+1}+1}=\dfrac{3}{2}\)

\(\Rightarrow f\left(0\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)\) nên hàm liên tục tại \(x=0\)

NV
20 tháng 3 2021

2b.

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{x^3-x^2+2x-2}{x-1}=\lim\limits_{x\rightarrow1^-}\dfrac{x^2\left(x-1\right)+2\left(x-1\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x^2+2\right)\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1^-}\left(x^2+2\right)=3\)

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=f\left(1\right)=\lim\limits_{x\rightarrow1^+}\left(3x+a\right)=a+3\)

- Nếu \(a=0\Rightarrow f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)\) hàm liên tục tại \(x=1\)

- Nếu \(a\ne0\Rightarrow\lim\limits_{x\rightarrow1^-}f\left(x\right)\ne\lim\limits_{x\rightarrow1^+}f\left(x\right)\Rightarrow\) hàm không liên tục tại \(x=1\)

23 tháng 2 2021

oho☢☢☠☠

23 tháng 2 2021

f(x) chia hết cho 3 với mọi x

=> f(0) chia hết cho 3 => C chia hết cho 3

f(1) ; f(-1) chia hết cho 3

=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3

=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3

f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3

f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3

 Vậy....................... 

4 tháng 8 2018

Đáp án C.

f’(x) = (x – 1)x2(x + 1)3(x + 2)4

Ta thấy phương trình f’(x) = 02 nghiệm đơn là 1; -12 nghiệm kép là 0; -2

Từ đó số điểm cực trị là 2.

Ta có

\(F\left(0\right)=2016\)

\(\Leftrightarrow a\cdot0^2+b\cdot0+c=2016\)

\(\Leftrightarrow0+0+c=2016\)

\(\Leftrightarrow c=2016\)

\(F\left(1\right)=2016\)

\(\Leftrightarrow a\cdot1^2+b\cdot1+c=2017\)

\(\Leftrightarrow a+b+c=2017\)

\(\Leftrightarrow a+b+2016=2017\)

\(\Leftrightarrow a+b=1\)       \(\left(1\right)\)

\(F\left(-1\right)=2018\)

\(\Leftrightarrow a\cdot\left(-1\right)^2+b\cdot\left(-1\right)+c=2018\)

\(\Leftrightarrow a-b+c=2018\)

\(\Leftrightarrow a-b+2016=2018\)

\(\Leftrightarrow a-b=2\)       \(\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow a=\left(1+2\right)\div2=3\div2=1.5\)

\(\Rightarrow b=1-1.5=-0.5\)

Vậy \(F\left(x\right)=1.5x^2-0.5x+2016\)

\(\Leftrightarrow F\left(2\right)=1.5\cdot2^2-0.5\cdot2+2016\)

\(=1.5\cdot4-0.5\cdot2+2016\)

\(=6-1+2016=2021\)

Vậy \(F\left(2\right)=2021\)

nhớ k nha

2 tháng 11 2017

Đáp án D