xác định a,b để f(x)=x3+ax+b chia hết cho x2+x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức x2+ x-6 = (x-2)(x+3)
Gọi thương của phép chia f(x) cho đa thức trên là Q(x)
Ta có f(2)= 8+ 2a+b=0
Suy ra 2a+b=-8
lại có f(-3)= -27+ 3a+b=0
Suy ra 3a+b=27
đến đây ta dùng máy tính giải hệ ta được a=35;b=-78
a: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4\left(a-8\right)-4a+28⋮x+4\)
hay a=7
\(a,4x^3+ax+b⋮x-2\\ \Leftrightarrow4x^3+ax+b=\left(x-2\right)\cdot a\left(x\right)\)
Thay \(x=2\Leftrightarrow32+2a+b=0\Leftrightarrow2a+b=-32\left(1\right)\)
\(4x^3+ax+b⋮x+1\\ \Leftrightarrow4x^3+ax+b=\left(x+1\right)\cdot b\left(x\right)\)
Thay \(x=-1\Leftrightarrow-4-a+b=0\Leftrightarrow a-b=-4\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\) ta có hệ \(\left\{{}\begin{matrix}2a+b=-32\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-36\\b=a+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-12\\b=-8\end{matrix}\right.\)
sử dụng định lí bê du đi:
x2+x-2=0
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\) = 0
\(\Rightarrow\)\(\left\{\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-2\\x=1\end{matrix}\right.\)thay x=1 hoặc x=-2 vào f(x) ta đc f(1) hoặc f(-2):
13+a.1+b=>a+b=-1 vậy a=-\(\frac{1}{b}\) và b=\(-\frac{1}{a}\)
bn ơi ms lớp 8 à, có cách làm khác k, định lý bê du đi là cái j mk cũng chịu