Tìm x sao cho
a) (x-1) . (x-2) > 0
b) (x-2)2 . (x+1) . (x -4) <0
c) x2 . (x-3) / (x-9) <0
d) 5/x <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(4\left(x+1\right)^2+\left(2x+1\right)^2-8\left(x-1\right)\left(x+1\right)-11=0\)
\(\Leftrightarrow4x^2+8x+4+4x^2+4x+1-8x^2+8-11=0\)
\(\Leftrightarrow12x=-2\)
hay \(x=-\dfrac{1}{6}\)
b: Ta có: \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)-1=0\)
\(\Leftrightarrow x^2+6x+9-x^2-4x+32-1=0\)
\(\Leftrightarrow2x=-40\)
hay x=-20
a: (x+1)^3-x(x-2)^2+x-1=0
=>x^3+3x^2+3x+1-x(x^2-4x+4)+x-1=0
=>x^3+3x^2+4x-x^3+4x^2-4x=0
=>7x^2=0
=>x=0
b: =>x^3-3x^2+3x-1-x^3-27+3x^2-12=2
=>3x=2+1+27+12=39+3=42
=>x=14
a, \(\Rightarrow x-2\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
x-2 | 1 | -1 | 3 | -3 |
x | 3 | 1 | 5 | -1 |
b, \(3\left(x-2\right)+13⋮x-2\Rightarrow x-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)
x-2 | 1 | -1 | 13 | -13 |
x | 3 | 1 | 15 | -11 |
c, \(x\left(x+7\right)+2⋮x+7\Rightarrow x+7\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+7 | 1 | -1 | 2 | -2 |
x | -6 | -8 | -5 | -9 |
b) Ta có: xy=-3
nên x,y là các ước của -3
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\\\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(1;-3\right);\left(-1;3\right);\left(-3;1\right);\left(3;-1\right)\right\}\)
a: =>a(x+1)(x+2)+bx(x+2)+cx(x+1)=1
=>a(x^2+3x+2)+bx^2+2bx+cx^2+cx=1
=>ax^2+3ax+2a+bx^2+2bx+cx^2+cx=1
=>x^2(a+b+c)+x(3a+2b+c)+2a=1
=>a+b+c=0 và 3a+2b+c=0 và a=1/2
=>a=1/2; b+c=-1/2; 2b+c=-3/2
=>b=-1; c=1/2; a=1/2
b: =>1=(ax+b)(x-1)+c(x^2+1)
=>x^2*a-a*x+bx-b+cx^2+c=1
=>x^2(a+c)+x(-a+b)-b+c=1
=>a+c=0 và -a+b=0 và -b+c=1
=>a+b=-1 và -a+b=0 và a+c=0
=>a=-1/2; b=-1/2; c=-a=1/2
\(a,\Leftrightarrow x^2-2x-x^2+1=0\\ \Leftrightarrow-2x+1=0\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(2x-1-x-4\right)\left(2x-1+x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(3x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
a: Ta có: \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b: Ta có: \(2\left(3x-2\right)^2=9x^2-4\)
\(\Leftrightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(6x-4-3x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
a: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
=>x-3/x-9<0
=>3<x<9
c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)
⇒ \(\dfrac{5}{x}\) - 1 < 0 ⇒ \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)
Lập bảng ta có:
Theo bảng trên ta có \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)
Vậy tập hợp nghiệm của bất phương trình đã cho là:
S = (- ∞; 0) \(\cup\) (5 ; + ∞)