Cho tam giác ABC,gọi D là trung điểm của AC,gọi E là trung điểm của AB. Trên tia đối của tia DB lấy điểm M sao cho DM = DB. Trên tia đối của tia EC lấy điểm N sao cho EN = EC.Chứng minh :
a) Tam giác ADM = tam giác CDB
b) AM // BC
c) A là trung điểm của MN
CÁC BẠN CHỈ CẦN GIẢI CÂU C) LÀ ĐƯỢC !
a/ Xét \(\Delta ADM\) và \(\Delta CDB\) có:
AD=CD(vì d là trung điểm của AC)
\(\widehat{ADM}=\widehat{CDM}\) (2 góc đối đỉnh)
DM=DB(gt)
\(\Rightarrow\Delta ADM=\Delta CDB\left(c.g.c\right)\)
\(\Rightarrow\widehat{MAD}=\widehat{BCD}\) (2 góc tương ứng bằng nhau), AM=CB( 2 cạnh tương ứng bằng nhau)
Mà \(\widehat{MAD}\) và \(\widehat{BCD}\) ở vị trí so le trong
\(\Rightarrow\) AM//BC (1)
Xét \(\Delta NAE\) và \(\Delta CBE\) có:
AE=BE(vì E là trung điểm của AB)
\(\widehat{NEA}=\widehat{CEB}\) (2 góc đối đỉnh)
NE=CE(gt)
\(\Rightarrow\Delta NAE=\Delta CBE\left(c.g.c\right)\)
\(\Rightarrow\widehat{NAE}=\widehat{CBE}\) (2 góc tương ứng bằng nhau), NA=CB(2 cạnh tương ứng bằng nhau)
Mà \(\widehat{NAE}\) và \(\widehat{CBE}\) ở vị trí so le trong
\(\Rightarrow\) NA//BC (2)
Ta thấy (1) và (2) mâu thuẫn vì qua một điểm nằm ngoài một đường thẳng chỉ kẻ được một đường thẳng duy nhất song song với đường thẳng ấy nên ba điểm N , A , M thẳng hàng (3)
Mặt khác: AM=CB(cmt)
NA=CB(cmt)
\(\Rightarrow\) AM=NA (4)
Từ (3) và (4) \(\Rightarrow\) A là trung điểm của MN
h