K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2016

2.22.23....2n = 1024

2.22.23....2n = 210

=> 1+2+3+...+n = 10

(n+1).n : 2 = 10

(n+1).n = 10.2

(n+1).n = 20

(n+1).n = 5.4

=> n = 4

22 tháng 12 2016

Ta có: \(2.2^2.2^3.....2^n=1024\)

\(\Rightarrow2.2^2.2^3......2^n=2^{10}\)

\(\Rightarrow1+2+3+...+n=10\)

\(\Rightarrow n=4\)

9 tháng 2 2018

Ta có :

\(\left(2^{14}:1024\right).2^n=128\)

\(\Leftrightarrow\)\(\left(2^{14}:2^{10}\right).2^n=2^7\)

\(\Leftrightarrow\)\(2^4.2^n=2^7\)

\(\Leftrightarrow\)\(2^{n+4}=2^7\)

\(\Leftrightarrow\)\(n+4=7\)

\(\Leftrightarrow\)\(n=3\)

Vậy \(n=3\)

Chúc bạn học tốt 

9 tháng 2 2018

=> 8 .2^n = 128

=> 2^n = 128 : 8

=> 2^n = 16 = 2^4

=> n = 4

Vậy n = 4

Tk mk nha

12 tháng 2 2020

(214:1024).2n=128

(214:210).2n=27

24.2n=27

2n=27:24

2n=23

=> n=3

Học tốt

Bài 1: Gọi d=ƯCLN(3n+11;3n+2)

=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)

=>\(3n+11-3n-2⋮d\)

=>\(9⋮d\)

=>\(d\in\left\{1;3;9\right\}\)

mà 3n+2 không chia hết cho 3

nên d=1

=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau

Bài 2:

a:Sửa đề: \(n+15⋮n-6\)

=>\(n-6+21⋮n-6\)

=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)

mà n>=0

nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)

b: \(2n+15⋮2n+3\)

=>\(2n+3+12⋮2n+3\)

=>\(12⋮2n+3\)

=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)

=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)

mà n là số tự nhiên

nên n=0

c: \(6n+9⋮2n+1\)

=>\(6n+3+6⋮2n+1\)

=>\(2n+1\inƯ\left(6\right)\)

=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

mà n là số tự nhiên

nên \(n\in\left\{0;1\right\}\)

Ta thấy dãy số trên cách đều nhau 2 đơn vị nên ta có số số hạng là: 

\(\left[\left(2n-1\right)-1\right]:2+1=n\) ( số )

Tổng dãy số trên sẽ là: \(\left(2n-1+1\right).n\div2=n^2\)

Mà dãy số trên bằng 225 => \(n^2=225\)

=> n = \(\sqrt{225}=15\)

Vậy số tự nhiên cần tìm là n = 15

 

13 tháng 11 2015

8n+27 = 8n+12 +15 =4(2n+3)+15 chia hết chó 2n+3

=> 15 chia hết cho 2n+3

2n+3 thuộc ước của 15; U(15) ={1;3;5;15}

+2n+3 = 1 loại

+2n+3 =3 => n =0

+2n+3 =5 => n=1

+2n+3 =15=> n =6

Vậy n thuộc {0;1;6} 

13 tháng 11 2015

8n+27 = 8n+12 +15 =4(2n+3)+15 chia hết cho 2n+3

=> 15 chia hết cho 2n+3

2n+3 thuộc ước của 15; U(15) ={1;3;5;15}

+2n+3 = 1 loại

+2n+3 =3 => n =0

+2n+3 =5 => n=1

+2n+3 =15=> n =6

Vậy n thuộc {0;1;6}

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105 

3 tháng 2 2018

2^x+1=1024

2^x+1=2^10

x+1=10

x9

3 tháng 2 2018

\(2^{x+1}=1024\)

\(\Rightarrow2^x\cdot2=2^{10}\)

\(\Rightarrow2^x=2^{10}:2\)

\(\Rightarrow2^x=2^9\)

\(\Rightarrow x=9\)

Vậy x=9 

CHÚC BN HOK TỐT!!!