K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

a, \(2cos2x-8cosx+5=0\)

\(\Leftrightarrow4cos^2x-8cosx+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{4+\sqrt{10}}{2}\left(l\right)\\cosx=\dfrac{4-\sqrt{10}}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=\pm arccos\left(\dfrac{4-\sqrt{10}}{2}\right)+k2\pi\)

9 tháng 8 2021

b, \(sinx-\sqrt{3}cosx=-\sqrt{3}\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

29 tháng 12 2021

a: Xét tứ giác ABDC có

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)

\(m^3-n^3=14\)

\(mn=1\)

\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)

\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)

\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)

\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)

\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)

Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$

$\Leftrightarrow a+b+c=2$

$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$

 

5:

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc A chung

=>ΔABD đồng dạng với ΔACE

b; ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

c: ΔADE đồng dạng với ΔABC

=>S ADE/S ABC=(AD/AB)^2=1/4

 

12 tháng 3 2023

mở bài là giới thiệu về cụ nha mn em viết lộn ạ 

thân bài là đóng góp ạ 

Bài 1: 

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:

\(AF\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:

\(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)

12 tháng 8 2021

các bạn giúp mình bài 4 nhé. cảm ơn các bn nhiều

12 tháng 8 2021

các bạn ơi giúp mình với ạ