Giúp mình với gấp lắm ạ
Tìm tập xác định của hàm số
y = \(\dfrac{cos3x}{1-sinx}\) + tanx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
`@-1 <= sin x <= 1`
`<=>0 <= 1+sin x <= 2=>1+sin x >= 0`
`@-1 <= cos x <= 1`
`<=>1 >= -cos x >= -1`
`<=>2 >= 1-cos x >= 0=>1-cos x >= 0`
Hàm số xác định `<=>[1+sin x]/[1-cos x] >= 0`
`<=>{(1+sin x >= 0(L Đ)),(1-cos x > 0):}<=>1-cos x ne 0<=>x ne k2\pi (k in ZZ)`
`=>TXĐ: D=R\\{k2\pi| k in ZZ}`.
1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
ĐKXĐ:
\(x^3+1\ne0\Leftrightarrow x\ne-1\)
\(\Rightarrow D=R\backslash\left\{-1\right\}\)
ĐKXĐ: \(x^2-x+1\ne0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) (luôn đúng)
Hàm số xác định với mọi x hay \(D=R\)
ĐKXĐ:
\(x^4-2x^2+3\ne0\)
\(\Leftrightarrow\left(x^2-1\right)^2+2\ne0\) (luôn đúng)
Hàm xác định trên R hay \(D=R\)
Hàm số xác định: \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x>1\end{matrix}\right.\) \(\Rightarrow x>1\)
Vậy \(D=\left(1;+\infty\right)\)
\(y=\dfrac{cos3x}{1-sinx}+tanx=\dfrac{cos3x}{1-sinx}+\dfrac{sinx}{cosx}\)
Hàm số xác định khi \(\left\{{}\begin{matrix}1-sinx\ne0\\cosx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}sinx\ne1\\cosx\ne0\end{matrix}\right.\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\)