Tìm giá trị nhỏ nhất:
B=(2x2+1)4-3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=2(x^2-5/2x+3/2)
=2(x^2-2*x*5/4+25/16-1/16)
=2(x-5/4)^2-1/8>=-1/8
Dấu = xảy ra khi x=5/4
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
\(2x^2+6x-5=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{19}{2}\ge-\dfrac{19}{2}\)
Dấu "=" xảy ra khi \(x=-\dfrac{3}{2}\)
\(x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Câu 1:
$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$
Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$
Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.
Câu 2:
Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$
Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$
Với $x\in (1;3)$ thì hàm luôn nghịch biến
$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$
$\Rightarrow$ hàm không có min, max.
Ta có: A=2x2-3x+1=\(2\left(x^2-2.\dfrac{3}{4}+\dfrac{9}{16}\right)-\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)
Vì \(2\left(x-\dfrac{3}{4}\right)^2\ge0\)
\(\Rightarrow A\ge-\dfrac{1}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
Vậy,Min \(A=\dfrac{-1}{8}\Leftrightarrow x=\dfrac{3}{4}\)
Đáp án C
Ta có: y ' = 4 x 3 − 4 x = 0 ⇔ 4 x x 2 − 1 = 0 ⇔ x = 0 x = ± 1
Mà y 0 = 3 ; y 1 = 2 ; y 2 = 11 ⇒ M = 11 , m = 2.
Bài 4:
\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)
Bài 5:
\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)
mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha
a) \(A=2x^2-15\ge-15\forall x\)
\(minA=-15\Leftrightarrow x=0\)
b) \(B=2\left(x+1\right)^2-17\ge-17\forall x\)
\(minB=-17\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(B=\left(2x^2+1\right)^4-3\)
Ta có : \(\left(2x^2+1\right)^4\ge0\)
\(\Rightarrow\left(2x^2+1\right)^4-3\ge-3\)
\(\Rightarrow B\ge3\)
Vậy \(Min_B=-3\) khi và chỉ khi \(2x^2+1=0\Rightarrow2x^2=1\Rightarrow x^2=\frac{1}{2}\Rightarrow x=\pm\sqrt{\frac{1}{2}}\)
Mk nhầm đừng chép nha tri duong huu