K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2015

Xét tam giác ABC vuông tại A có A = 90 độ ; B = 30 độ và AC = 1 , pg BD 

HV : 

  B A C D

TAm giác ABC vuông tại A , theo hệ thức giữa cạnh và góc ta có :

AC = BC . sin 30 độ => BC = AC/sin30 = 2AC = 2.1 = 2 

AB = AC.cotg B = AC.cotg 30 = 1.\(\sqrt{3}=\sqrt{3}\)

BD là p/g B , theo tính chất của đường phân giác :

\(\frac{AD}{DC}=\frac{AB}{BC}\Rightarrow\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{2+\sqrt{3}}=\frac{1}{2+\sqrt{3}}=\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=2-\sqrt{3}\)

Tam giác ABD vuông tại A có : \(tanABD=tan15=\frac{AD}{AB}=2-\sqrt{3}\)

 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Đặt  \(A = \left( {2\sin {{30}^o} + \cos {{135}^o} - 3\tan {{150}^o}} \right).\left( {\cos {{180}^o} - \cot {{60}^o}} \right)\)

Ta có: \(\left\{ \begin{array}{l}\cos {135^o} =  - \cos {45^o};\cos {180^o} =  - \cos {0^o}\\\tan {150^o} =  - \tan {30^o}\end{array} \right.\)

\( \Rightarrow A = \left( {2\sin {{30}^o} - \cos {{45}^o} + 3\tan {{30}^o}} \right).\left( { - \cos {0^o} - \cot {{60}^o}} \right)\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\sin {30^o} = \frac{1}{2};\tan {30^o} = \frac{{\sqrt 3 }}{3}\\\cos {45^o} = \frac{{\sqrt 2 }}{2};\cos {0^o} = 1;\cot {60^o} = \frac{{\sqrt 3 }}{3}\end{array} \right.\)

\( \Rightarrow A = \left( {2.\frac{1}{2} - \frac{{\sqrt 2 }}{2} + 3.\frac{{\sqrt 3 }}{3}} \right).\left( { - 1 - \frac{{\sqrt 3 }}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow A =  - \left( {1 - \frac{{\sqrt 2 }}{2} + \sqrt 3 } \right).\left( {1 + \frac{{\sqrt 3 }}{3}} \right)\\ \Leftrightarrow A =  - \frac{{2 - \sqrt 2  + 2\sqrt 3 }}{2}.\frac{{3 + \sqrt 3 }}{3}\\ \Leftrightarrow A =  - \frac{{\left( {2 - \sqrt 2  + 2\sqrt 3 } \right)\left( {3 + \sqrt 3 } \right)}}{6}\\ \Leftrightarrow A =  - \frac{{6 + 2\sqrt 3  - 3\sqrt 2  - \sqrt 6  + 6\sqrt 3  + 6}}{6}\\ \Leftrightarrow A =  - \frac{{12 + 8\sqrt 3  - 3\sqrt 2  - \sqrt 6 }}{6}.\end{array}\)

b)

Đặt  \(B = {\sin ^2}{90^o} + {\cos ^2}{120^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{135^o}\)

Ta có: \(\left\{ \begin{array}{l}\cos {120^o} =  - \cos {60^o}\\\cot {135^o} =  - \cot {45^o}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{\cos ^2}{120^o} = {\cos ^2}{60^o}\\{\cot ^2}{135^o} = {\cot ^2}{45^o}\end{array} \right.\)

\( \Rightarrow B = {\sin ^2}{90^o} + {\cos ^2}{60^o} + {\cos ^2}{0^o} - {\tan ^2}60 + {\cot ^2}{45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\left\{ \begin{array}{l}\cos {0^o} = 1;\;\;\cot {45^o} = 1;\;\;\cos {60^o} = \frac{1}{2}\\\tan {60^o} = \sqrt 3 ;\;\;\sin {90^o} = 1\end{array} \right.\)

\( \Rightarrow B = {1^2} + {\left( {\frac{1}{2}} \right)^2} + {1^2} - {\left( {\sqrt 3 } \right)^2} + {1^2}\)

\( \Leftrightarrow B = 1 + \frac{1}{4} + 1 - 3 + 1 = \frac{1}{4}.\)

c

Đặt  \(C = \cos {60^o}.\sin {30^o} + {\cos ^2}{30^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {30^o} = \frac{1}{2};\;\;\cos {30^o} = \frac{{\sqrt 3 }}{2};\;\cos {60^o} = \frac{1}{2}\;\)

\( \Rightarrow C = \frac{1}{2}.\frac{1}{2} + {\left( {\;\frac{{\sqrt 3 }}{2}} \right)^2} = \frac{1}{4} + \frac{3}{4} = 1.\)

13 tháng 8 2019

Cái này kiến thức căn bản mà bạn đổi 150 thành 600−450 từ đây dùng công thức trừ của sin với cos thôi!

 
13 tháng 8 2019

ミ★ドラえもん✼(Hội con 🐄+HỘI HỌC HÀNH)★彡 chuyên toán lớp 6;7;8 ( chưa học lớp 8 nhưng vẫn giải) thế bạn làm đi nào, mà mình cần cách khác cơ!

9 tháng 7 2020

A=(sin210+sin280)+(sin220+sin70)+(sin230+sin260)+(sin240+sin250)

Lại có: sin80=cos10; sin70=cos20; sin60=cos30; sin50=cos40

=> sin280=cos210; sin270=cos220; sin260=cos230; sin250=cos240

=>A=(sin210+cos210)+(sin220+cos220)+(sin230+cos230)+(sin240+cos240)

=>A=1+1+1+1=4

29 tháng 10 2020

A = 4

học tốt nha

15 tháng 7 2021

sin30 <sin69

cos81<cos40

15 tháng 7 2021

\(sin30^0< sin69^0\)

\(cos81^0< cos40^0\)