x/3=y/4 và x2 + y2 = 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo t/c của dãy tỉ số bằng nhau ta có:
x/3=y/4=(x^2+y^2)/(3^2+4^2)=1
=>x=1.3=3
=>y=1.4=4
Mình viết bằng đt nên hơi khó hiểu thông cảm nhé
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: \(x^2+y^2=25\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
Ta có: (C1): x2+ y2 – 4 = 0 có tâm O (0; 0) và bán kính R= 2;
Dường tròn (C2): (x-3)2+ (y-4) 2= 25 có tâm I( 3;4) và R= 5 nên OI= 5
Ta thấy: 5-2 < OI< 5+ 2
nên chúng cắt nhau.
Chọn B.
Đoạn từ sau chữ "Biết" thiếu dấu liên kết giữa $x_1,y_1,x_2,y_2$. Bạn cần viết lại đề rõ hơn.
a: \(=5x\left(xy^2+3x+6y^2\right)\)
b: \(=\left(x-2\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x+3-x-2\right)=\left(x-2\right)\)
c: \(=\left(x-3\right)\left(x-4\right)\)
d: \(=x\left(x^2-2xy+y^2-9\right)\)
=x(x-y-3)(x-y+3)
e: \(=\left(x+y\right)^2-25=\left(x+y+5\right)\left(x+y-5\right)\)
f: \(=\left(x-4\right)\left(x+3\right)\)
a) Kết quả 2x(2x – 3). b) Kết quả xy( x 2 – 2xy + 5).
c) Kết quả 2x(x + 1)(x + 4). d) Kết quả 2 5 ( y − 1 ) ( x + y ) .
a: =x^3+8-1+27x^3=28x^3+7
b: Sửa đề: (2+y)(y^2-2y+4)+(5-y)(25+5y+y^2)
=8+y^3+125-y^3
=133
d: \(x\left(x^2-1\right)+3\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
e: \(x^2-10x+25=\left(x-5\right)^2\)
g: \(x^2-64=\left(x-8\right)\left(x+8\right)\)
h: \(\left(x+y\right)^2-\left(x^2-y^2\right)\)
\(=\left(x+y\right)\left(x+y-x+y\right)\)
\(=2y\left(x+y\right)\)
i: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
k: \(x^2+2xy+y^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
l: \(2xy-x^2-y^2+16\)
\(=-\left(x^2-2xy+y^2-16\right)\)
\(=-\left(x-y-4\right)\left(x-y+4\right)\)
a: \(5x-15y=5\left(x-3y\right)\)
b: \(5x^2y^2+15x^2y+30xy^2=5xy\left(xy+3x+6y\right)\)
c: \(x^3-2x^2y+xy^2-9x\)
\(=x\left(x^2-9-2xy+y^2\right)\)
\(=x\left(x-y-3\right)\left(x-y+3\right)\)
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
Vì \(x\) và \(y\) là hai đại tượng tỉ lệ nghịch nên \(xy=a\left(a\ne0\right)\)
Thay các giá trị tương ứng của \(x\) và \(y\) ta được :
\(x_1.y_1=x_2.y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}\)
\(\Rightarrow\dfrac{y_1}{3}=\dfrac{y_2}{4}\)
- Áp dụng t/c dãy tỉ số bằng nhau, ta có :
\(\dfrac{y_1}{3}=\dfrac{y_2}{4}=\dfrac{y_1+y_2}{3+4}=\dfrac{14}{7}=2\)
\(\Rightarrow y_2=2.4=8\)
x= -3 hoặc 3
y= -4 hoặc 4