cho kq bai nay
Giá trị nhỏ nhất của biểu thức l20092007x+2010l là......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|2009^2007.x+2010| > 0
để đạt GTNN thi tổng trên bằng 0
làm ơn **** giùm
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\).Dấu "=" xảy ra khi a và b cùng dấu, hay \(a.b\ge0\)
\(B=\left|x-2010\right|+\left|2-x\right|\ge\left|x-2010+2-x\right|=2008\)
Dấu "=" xảy ra khi \(\left(x-2010\right)\left(2-x\right)\ge0\)\(\Leftrightarrow\left(x-2\right)\left(x-2010\right)\le0\)(1)
Do \(x-2>x-2010\) nên (1) tương đương \(x-2\ge0\) và \(x-2010\le0\), tương đương \(2\le x\le2010\)
Vậy GTNN của B là 2008
l2009x+2010l lớn hơn hơn hoặc =0
=> l2009x+2010l có GTNN = 0 khi l2009x+2010l
=>x=\(\frac{-2010}{2009}\)
\(M=4x^2-10x+\frac{9}{2x}+2018\)
\(=4x^2-12x+2x+\frac{9}{2x}+2018\)
\(=\left(4x^2-12x+9\right)+\left(2x+\frac{9}{2x}\right)+2009\)
\(=\left[\left(2x\right)^2-2.2x.3+3^2\right]+\left(2x+\frac{9}{2x}\right)+2009\)
\(=\left(2x-3\right)^2+\left(2x+\frac{9}{2x}\right)+2009\)
Ta có : \(2x+\frac{9}{2x}\ge2\sqrt{2x\cdot\frac{9}{2x}}=2.\sqrt{9}=6\)
\(\Rightarrow M\ge\left(2x-3\right)^2+6+2009\ge2015\)
Dấu "=" xảy ra <=> \(x=\frac{3}{2}\)
Vậy GTNN của M là \(2015\) tại \(x=\frac{3}{2}\)