K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2016

Bài 1:

Áp dụng BĐT AM-GM ta có:

\(x+\frac{1}{x}\ge2\sqrt{x\cdot\frac{1}{x}}=2\)

Dấu "=" xảy ra khi \(x=1\)

Bài 2:

Áp dụng BĐT AM-GM ta có:

\(a^2+b^2+c^2+d^2\ge4\sqrt[4]{a^2b^2c^2d^2}=4\) (1)

\(ab+cd\ge2\sqrt{abcd}=2\) (2)

\(ac+bd\ge2\sqrt{acbd}=2\) (3)

\(ad+bc\ge2\sqrt{adbc}=2\) (4)

Cộng theo vế của (1),(2),(3),(4) ta có điều phải chứng minh

Dấu "=" khi \(\begin{cases}a=b=c=d\\abcd=1\end{cases}\)\(\Rightarrow a=b=c=d=\frac{1}{4}\)

 

19 tháng 12 2016

1) \(x+\frac{1}{x}\ge2\left(1\right)\)

<=> \(\frac{x^2+1}{x}\ge2\)

<=> x2 + 1 \(\ge\)2x

<=> x2 + 1 - 2x \(\ge\) 0

<=> (x - 1)2 \(\ge\)0 (2)

Bđt (2) đúng vậy bđt (1) được chứng minh

b) Áp dụng bđt AM-GM cho 10 số dương ta có:

a2+b2+c2+d2+ab+ac+ad+bc+bd+cd

\(\ge10\sqrt[10]{a^2.b^2.c^2.d^2.ab.ac.ad.bc.bd.cd}=10\sqrt[10]{\left(a.b.c.d\right)^5}\)

\(=10\sqrt[10]{1}=10\left(đpcm\right)\)

 

13 tháng 10 2016

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

13 tháng 10 2016

P OI cai nay dung bat dang thuc co si do

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

Ta có: \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)

 

*Chứng minh bất đẳng thức

Ta có: \(\forall a,b\ge0\) thì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\) \(\Leftrightarrow a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)  (đpcm)

 

 

 

 

Ta có: \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\forall a,b>0\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\forall a,b>0\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\forall a,b>0\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\forall a,b>0\)(đpcm)

22 tháng 7 2016

a) Ta có :  \(\left(x-1\right)^2\ge0\Leftrightarrow x^2-2x+1\ge0\Leftrightarrow x^2+1\ge2x\Leftrightarrow\frac{x^2+1}{x}\ge2\Leftrightarrow x+\frac{1}{x}\ge2\)(vì x > 0)

b) \(\left(x+1\right)^2\ge0\Leftrightarrow x^2+2x+1\ge0\Leftrightarrow x^2+1\ge-2x\Leftrightarrow\frac{x^2+1}{x}\le-2\Leftrightarrow x+\frac{1}{x}\le-2\)(vì x < 0)

a) Ta có: \(x+\frac{1}{x}-2=\frac{x^2-2x+1}{x}=\frac{\left(x-1\right)^2}{x}\)

Vì \(x>0,\left(x-1\right)^2\ge0\)nên \(x++\frac{1}{x}-2\ge0\)

Vậy \(x+\frac{1}{x}\ge2\)vs \(x>0\)

b) Ta có: \(x+\frac{1}{x}+2=\frac{x^2+2x+1}{x}=\frac{\left(x+1\right)^2}{x}\)

Vì \(x< 0,\left(x+1\right)^2\le0\), nên \(x+\frac{1}{x}\le0\)

Vậy \(x+\frac{1}{x}\le-2\)vs \(x< 0\)

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

11 tháng 6 2018

\(\Leftrightarrow\frac{\left(x-y\right)^2+2xy}{x-y}\ge2\sqrt{2}\)

\(\Leftrightarrow\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{2}\)

mặt khác \(x>y\Rightarrow x-y>0\)

áp dụng BĐT CÔ-SI CHO hai số dương ta được \(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\frac{2}{x-y}}\ge2\sqrt{2}\)

dấu''='' xảy ra khi và chỉ khi \(\left(x-y\right)=\frac{2}{x-y}\)

11 tháng 6 2018

Trường hợp dấu băng xảy ra chưa rỗ, còn cần phải giải thêm

\(\ge3\)mới chứng minh được

28 tháng 4 2019

@Trần Thùy Linh nói đúng đề rồi nhé

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\)

Áp dụng bđt Cauchy cho 3 số không âm :

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{xyz}}=3\sqrt[3]{1}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=x=1\)