K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2016

a,Xet tam giac ABC co : 

AM=MB va BN=NC

=> MN la dtb => MN=1/2AC va MN//AC (1)

Xet tam giac ADC co : 

DQ=QA va DP=PC

=> QP la dtb => QP=1/2AC va MN//AC (2)

Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)

Hay tu giac MNPQ la HBH

b, Xet tu giac MDPB co : 

AB//DC=>MB//DP

AB=DC mà AM=MB va DP=PC

=> MB=DP

Hay tu giac MDPB la HBH

c, mk k bt lm xl bn

a,Xet tam giac ABC co : 

AM=MB va BN=NC

=> MN la dtb => MN=1/2AC va MN//AC (1)

Xet tam giac ADC co : 

DQ=QA va DP=PC

=> QP la dtb => QP=1/2AC va MN//AC (2)

Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)

Hay tu giac MNPQ la HBH

b, Xet tu giac MDPB co : 

AB//DC=>MB//DP

AB=DC mà AM=MB va DP=PC

=> MB=DP

Hay tu giac MDPB la HBH

21 tháng 12 2018

giúp mình với sắp thi rồi

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA

a: AB//DC

\(P\in DC\)

Do đó: AB//DP

AB=DC/2

DP=DC/2=PC

Do đó: AB=DP=CP

Xét tứ giác ABPD có

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC

=>MN//AC và MN=AC/2(1)

Xét ΔADC có

Q,P lần lượt là trung điểm của DA,DC

=>QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

c: ABPD là hình bình hành

=>AP cắt BD tại trung điểm của mỗi đường

=>E là trung điểm của AP và BD

Xét ΔADP có

Q,E lần lượt là trung điểm của AD,AP

=>QE là đường trung bình

=>QE//DP

=>QE//DC

Xét ΔBDC có

E,N lần lượt là trung điểm của BD,BC

=>EN là đường trung bình

=>EN//DC

EN//DC

QE//DC

mà QE và EN có điểm chung là E

nên Q,E,N thẳng hàng

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔCDA có

P là trung điểm của CD

Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA

Suy ra: PQ//AC và PQ=AC/2(2)

Từ (1) và (2) suy raMN//PQ và MN=PQ

hay MNPQ là hình bình hành

30 tháng 7 2023

a) Ta có:-

- M là trung điểm của AB

⇒  AM = MB.

- N là trung điểm của BC

⇒ BN = NC.

- P là trung điểm của CD

⇒ CP = PD.

- Q là trung điểm của DA

⇒ DQ = QA.

Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.

⇒ tứ giác MNPQ là hình bình hành.

Có:

- I là trung điểm của AC

⇒AI = IC.

- K là trung điểm của BD

⇒ BK = KD.

Do đó, ta có: AI = IC = BK = KD.

⇒ tứ giác INKQ là hình bình hành.

b)Gọi O là giao điểm của MP và NQ ta có:

MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).

⇒ MP song song với NQ.

do đó :O nằm trên MP và NQ.

  Gọi H là giao điểm của MI và NK ta có:

MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD). 

⇒ MI song song với NK.

  Do đó: H nằm trên cả MI và NK.

  Gọi G là giao điểm của OH và BD ta có:

OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên  MI và NK). 

⇒ OH song song với BD.

doo đó: G nằm trên OH và BD.

⇒ I, O, K thẳng hàng.(ĐPCM)

a: Xét ΔBAC có BM/BA=BN/BC=1/2

nên MN//AC và MN=1/2AC

Xét ΔDAC có DQ/DA=DP/DC

nên PQ//AC và PQ/AC=DQ/DA=1/2

=>PQ=1/2AC

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔCAB có CI/CA=CN/CB=1/2

nên IN//AB và IN=1/2AB

Xét ΔDAB có DQ/DA=DK/DB=1/2

nên QK//AB và QK=1/2AB

=>IN//QK và IN=QK

=>INKQ là hình bình hành

b: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường

=>O là trung điểm của NQ

INKQ là hbh

=>IK cắt NQ tại trung điểm của mỗi đường

=>I,O,K thẳng hàng

18 tháng 12 2022

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN vuông góc với NP

=>MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì MN=NP

=>AC=BD

a: xét tứ giác ADFE có 

AE//DF

AE=DF

Do đó: ADFE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình chữ nhật

mà AE=AD

nên ADFE là hình vuông

c: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: DE//BF và DE=BF(1)

hay ME//NF

Xét tứ giác BEFC có

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

=>EC và BF cắt nhau tại trung điểm của mỗi đường

=>N là trung điểm của BF

=>FN=BF/2(2)

Ta có: AEFD là hình vuông

=>AF và DE vuông góc với nhau tại trung điểm của mỗi đường và bằng nhau

=>M là trung điểm của DE

=>EM=DE/2(3)

Từ (1), (2) và (3) suy ra EM=FN

Xét tứ giác EMFN có 

EM//FN

EM=FN

Do đó: EMFN là hình bình hành

mà \(\widehat{EMF}=90^0\)

nên EMFN là hình chữ nhật