1. cho tứ giác ABCD và các điểm M,N,P,Q theo thứ tự là trung điểm cấc cạnh AB,BC,CD,DA .Gọi K là giao điểm của AC và DM,L là giao điểm của BD và CM
a. c/m rằng tứ giác MNPQ là hình gì? vì sao?
b.MDPB là hình gì ? vì sao?
c.CM:AK=KL=CL
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xet tam giac ABC co :
AM=MB va BN=NC
=> MN la dtb => MN=1/2AC va MN//AC (1)
Xet tam giac ADC co :
DQ=QA va DP=PC
=> QP la dtb => QP=1/2AC va MN//AC (2)
Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)
Hay tu giac MNPQ la HBH
b, Xet tu giac MDPB co :
AB//DC=>MB//DP
AB=DC mà AM=MB va DP=PC
=> MB=DP
Hay tu giac MDPB la HBH
c, mk k bt lm xl bn
a,Xet tam giac ABC co :
AM=MB va BN=NC
=> MN la dtb => MN=1/2AC va MN//AC (1)
Xet tam giac ADC co :
DQ=QA va DP=PC
=> QP la dtb => QP=1/2AC va MN//AC (2)
Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)
Hay tu giac MNPQ la HBH
b, Xet tu giac MDPB co :
AB//DC=>MB//DP
AB=DC mà AM=MB va DP=PC
=> MB=DP
Hay tu giac MDPB la HBH
Tứ giác có thể là hình vuông, chữ nhật phải không bạn?
P/s: Hỏi thôi chớ không trả lời đâu :D
Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA
a: AB//DC
\(P\in DC\)
Do đó: AB//DP
AB=DC/2
DP=DC/2=PC
Do đó: AB=DP=CP
Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình của ΔBAC
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q,P lần lượt là trung điểm của DA,DC
=>QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
Xét tứ giác MNPQ có
MN//PQ
MN=PQ
Do đó: MNPQ là hình bình hành
c: ABPD là hình bình hành
=>AP cắt BD tại trung điểm của mỗi đường
=>E là trung điểm của AP và BD
Xét ΔADP có
Q,E lần lượt là trung điểm của AD,AP
=>QE là đường trung bình
=>QE//DP
=>QE//DC
Xét ΔBDC có
E,N lần lượt là trung điểm của BD,BC
=>EN là đường trung bình
=>EN//DC
EN//DC
QE//DC
mà QE và EN có điểm chung là E
nên Q,E,N thẳng hàng
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔCDA có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA
Suy ra: PQ//AC và PQ=AC/2(2)
Từ (1) và (2) suy raMN//PQ và MN=PQ
hay MNPQ là hình bình hành
a) Ta có:-
- M là trung điểm của AB
⇒ AM = MB.
- N là trung điểm của BC
⇒ BN = NC.
- P là trung điểm của CD
⇒ CP = PD.
- Q là trung điểm của DA
⇒ DQ = QA.
Do đó, ta có: AM = MB = BN = NC = CP = PD = DQ = QA.
⇒ tứ giác MNPQ là hình bình hành.
Có:
- I là trung điểm của AC
⇒AI = IC.
- K là trung điểm của BD
⇒ BK = KD.
Do đó, ta có: AI = IC = BK = KD.
⇒ tứ giác INKQ là hình bình hành.
b)Gọi O là giao điểm của MP và NQ ta có:
MP // AB và NQ//CD ( M và N là trung điểm của AB và CD).
⇒ MP song song với NQ.
do đó :O nằm trên MP và NQ.
Gọi H là giao điểm của MI và NK ta có:
MI // AC và NK // BD (do I và K là trung điểm của đường chéo AC và BD).
⇒ MI song song với NK.
Do đó: H nằm trên cả MI và NK.
Gọi G là giao điểm của OH và BD ta có:
OH //MP và BD // MP (do O nằm trên MP và NQ, và H nằm trên MI và NK).
⇒ OH song song với BD.
doo đó: G nằm trên OH và BD.
⇒ I, O, K thẳng hàng.(ĐPCM)
a: Xét ΔBAC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔDAC có DQ/DA=DP/DC
nên PQ//AC và PQ/AC=DQ/DA=1/2
=>PQ=1/2AC
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔCAB có CI/CA=CN/CB=1/2
nên IN//AB và IN=1/2AB
Xét ΔDAB có DQ/DA=DK/DB=1/2
nên QK//AB và QK=1/2AB
=>IN//QK và IN=QK
=>INKQ là hình bình hành
b: MNPQ là hình bình hành
=>MP cắt NQ tại trung điểm của mỗi đường
=>O là trung điểm của NQ
INKQ là hbh
=>IK cắt NQ tại trung điểm của mỗi đường
=>I,O,K thẳng hàng
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//PN và MQ=PN
=>MNPQ là hình bình hành
Xét ΔBAC có BM/BA=BN/BC
nên MN//AC và MN=AC/2
=>MN vuông góc với NP
=>MNPQ là hình chữ nhật
b: Để MNPQ là hình vuông thì MN=NP
=>AC=BD
a: xét tứ giác ADFE có
AE//DF
AE=DF
Do đó: ADFE là hình bình hành
mà \(\widehat{EAD}=90^0\)
nên ADFE là hình chữ nhật
mà AE=AD
nên ADFE là hình vuông
c: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
Suy ra: DE//BF và DE=BF(1)
hay ME//NF
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
=>EC và BF cắt nhau tại trung điểm của mỗi đường
=>N là trung điểm của BF
=>FN=BF/2(2)
Ta có: AEFD là hình vuông
=>AF và DE vuông góc với nhau tại trung điểm của mỗi đường và bằng nhau
=>M là trung điểm của DE
=>EM=DE/2(3)
Từ (1), (2) và (3) suy ra EM=FN
Xét tứ giác EMFN có
EM//FN
EM=FN
Do đó: EMFN là hình bình hành
mà \(\widehat{EMF}=90^0\)
nên EMFN là hình chữ nhật