K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2020

Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM

Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2

Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2

21 tháng 8 2020

Kẻ AE⊥AN⇒ˆEAN=90o⇒ˆDAE=15o,AB=AD,ˆB=ˆD⇒ΔADE=ΔABM⇒AE=AMAE⊥AN⇒EAN^=90o⇒DAE^=15o,AB=AD,B^=D^⇒ΔADE=ΔABM⇒AE=AM

Theo hệ thức..... ⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2⇒1AH2=1AE2+1AN2⇒1AH2=1AM2+1AN2

Lại có AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2AH2+HD2=AD2⇒AH2=AD2−HD2=AD2−AD24⇒AH2=34AD2⇒1AH2=43AB2

Vậy....

27 tháng 8 2015

Qua A kẻ AK vuông góc với CD và kẻ đường thẳng vuông góc với Ax, cắt CD ở H.

Ta có \(\angle DAB=120^{\circ},\angle HAM=90^{\circ},\angle MAB=15^{\circ}\to\angle DAH=15^{\circ}\).

Suy ra \(\Delta ADH=\Delta ABM\left(g.c.g\right)\to AH=AM.\)

Xét tam giác vuông AHN có AK là đường cao. Theo hệ thức lượng trong tam giác vuông ta có 

\(\frac{1}{AH^2}+\frac{1}{AN^2}=\frac{1}{AK^2}\to\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}.\)


Để ý rằng tam giác ACD đều (cân có 1 góc bằng 60). Suy ra \(AK^2=AD^2-DK^2=AD^2-\left(\frac{AD}{2}\right)^2=\frac{3}{4}AD^2=\frac{3}{4}AB^2\to AK=\frac{\sqrt{3}}{2}AB.\)  
Do đó ta có \(\frac{4}{3AB^2}=\frac{1}{AK^2}=\frac{1}{AM^2}+\frac{1}{AN^2}.\)  (ĐPCM)
 

 

16 tháng 10 2019

kết bạn với mik đi

2 tháng 10 2016

A B C D N M x K H

Hình vẽ không được đẹp cho lắm :))

Từ kẻ đường thẳng tạo với cạnh AD một góc bằng 15 độ, cắt cạnh CD tại K. Từ đó dễ dàng suy ra góc KAN = 90 độ

Từ A lại kẻ đường thẳng vuông góc với CD tại H.

Xét tam giác AKD và tam giác AMB có AB = AD , góc BAM = góc KAD = 15 độ , góc ABM = góc ADK

=> tam giác AKD = tam giác AMB (g.c.g) => AM = AK

Áp dụng hệ thức về cạnh trong tam giác vuông, ta có : \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}+\frac{1}{AN^2}=\frac{1}{AH^2}\)

Mà : \(AH=sin\widehat{ADH}.AD=sin60^o.AB=\frac{\sqrt{3}}{2}AB\)

\(\Rightarrow\frac{1}{AH^2}=\frac{4}{3AB^2}\)

Vậy \(\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{4}{3AB^2}\)