cho hàm số y=f(x)=x^2-1 tìm x sao cho f(x)=1
Ai giải sớm thì tick sớm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3
g(-1) = 0,5; g(-2) = 2; g(0) = 0
b) f(x) = 2 ⇒ x = 1
g(x) = 2 ⇒ x = 2 hoặc x = -2
a: TXĐ: \(D=R\backslash\left\{-\dfrac{1}{2}\right\}\)
b: TXĐ: \(D=R\backslash\left\{-3;1\right\}\)
c: TXĐ: \(D=\left[-\dfrac{1}{2};3\right]\)
Ta có: f(x) = 3 => y = 3
Thay vào ta có:
\(\left|3x-1\right|-2\) = 3
=> \(\Rightarrow\left|3x-1\right|=3+2=5\)
+) 3x - 1 = 5
=> 3x = 5 + 1 = 6
=> x = \(\frac{6}{3}=2\)
+) 3x - 1 = -5
=> 3x = -5 + 1 = -4
=> x = \(\frac{-4}{3}\)
Vậy x = 2 hoặc x = \(\frac{-4}{3}\)
Ta có: \(y=f\left(x\right)=\left|3x-1\right|-2\)
Khi \(f\left(x\right)=3\) thì \(3=\left|3x-1\right|-2\)
\(\Rightarrow\left|3x-1\right|=5\)
\(\Rightarrow3x-1=\pm5\)
+) \(3x-1=5\Rightarrow x=2\)
+) \(3x-1=-5\Rightarrow x=\frac{-4}{3}\)
Vậy \(x\in\left\{2;\frac{-4}{3}\right\}\)
a) Thay x=-2 vào hàm số \(f\left(x\right)=2x^2-5\),ta được:
\(f\left(-2\right)=2\cdot\left(-2\right)^2-5=2\cdot4-5=8-5=3\)
Thay x=1 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(1\right)=2\cdot1^2-5=2-5=-3\)
Thay x=3 vào hàm số \(f\left(x\right)=2x^2-5\), ta được:
\(f\left(3\right)=2\cdot3^2-5=2\cdot9-5=18-5=13\)
Vậy: f(-2)=3
f(1)=-3
f(3)=13
b) Để f(x)=3 thì \(2x^2-5=3\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=3 thì \(x\in\left\{2;-2\right\}\)
\(f\left(x\right)=x^2-1\)
\(\Rightarrow f\left(x\right)=1\Leftrightarrow x^2-1=1\)
\(\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\sqrt{2}\) hoặc \(x=-\sqrt{2}\)
f(1)=1^2-1=0
f(x)=1 \(\Rightarrow\)y=f(x)=\(x^2\)-1=1
\(\Rightarrow\)\(x^2\)=2
\(\Rightarrow\)x=\(\sqrt{2}\)