K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

ta có na=nc => n thuộc trung trực của ac

ta có: oa=oc => o thuộc trung trực của ac

suy ra: on là trung trực của ac => on vuông góc với ac

ta có mo vuông góc với on ( tính chất tia phân giác của 2 góc kề bù )

Suy ra: om//ac (cùng vuông góc với on)

NV
24 tháng 12 2020

Hướng dẫn, ghét hình học phẳng:

Để ý rằng AB vuông góc (M) tại H nên AH, BH cũng là các tiếp tuyến của (M)

- Nối MA, MB

\(\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn (O) nên suy ra...

- AH, AC là 2 tiếp tuyến \(\Rightarrow\widehat{AMC}=\widehat{AMH}\)

Tương tự: \(\widehat{BMD}=\widehat{BMH}\)

\(\Rightarrow\widehat{CMD}=2\left(\widehat{AMH}+\widehat{BMH}\right)\)

b. AC, AH, BD, BH là các tiếp tuyến nên \(\left\{{}\begin{matrix}AC=AH\\BD=BH\end{matrix}\right.\) \(\Rightarrow AC+BD=...\)

c.

AC song song BD (cùng vuông CD), O và M lần lượt là trung điểm AB, CD 

\(\Rightarrow OM\) là đtb hình thang vuông ABDC \(\Rightarrow OM\) vuông CD

Hệ thức lượng tam giác vuông OMK: \(OM^2=OH.OK\)

Mà \(OM=\dfrac{AB}{2}\Rightarrow...\)

11 tháng 12 2023

a: Xét tứ giác ACMO có

\(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\)

=>ACMO là tứ giác nội tiếp

=>A,C,M,O cùng thuộc một đường tròn

b: Xét (O) có

CA,CM là các tiếp tuyến

Do đó: CA=CM và OC là phân giác của góc AOM

Xét (O) có

DM,DB là các tiếp tuyến

Do đó: DM=DB và OD là phân giác của góc MOB

OC là phân giác của góc AOM

=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)

Ta có: OD là phân giác của góc MOB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

Ta có: \(\widehat{AOM}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=MC\cdot MD\)

mà MC=CA và MD=DB

nên \(AC\cdot BD=OM=R^2\) không đổi

c: Gọi N là trung điểm của CD

Xét hình thang ACDB(AC//DB) có

O,N lần lượt là trung điểm của AB,CD

=>ON là đường trung bình của hình thang ABDC

=>ON//AC//BD

=>ON\(\perp\)AB

Vì ΔCOD vuông tại O có N là trung điểm của CD

nên N là tâm đường tròn ngoại tiếp ΔCOD

Xét (N) có

NO là bán kính

AB\(\perp\)NO tại O

Do đó: AB là tiếp tuyến của (N)

=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔCOD