K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 8 2021

ta có điều kiện \(\hept{\begin{cases}x+3\ge0\\x+7\ge0\end{cases}\Leftrightarrow x\ge-3}\)

ta có :

\(\sqrt{x+3}.\sqrt{x+7}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)

\(\Leftrightarrow\left(\sqrt{x+3}-2\right)\left(\sqrt{x+7}-3\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=2\\\sqrt{x+7}=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

9 tháng 11 2016

pt\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-2\sqrt{x+7}+6-3\sqrt{x+3}=0 \)

 

 

 

9 tháng 11 2016

nhầm .pt\(\sqrt{x+3}̣̣\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)

\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{array}\right.\)

bạn tự giải đc rồi nhé

18 tháng 2 2016

Sorry mình nới học lớp 6 thôi 3 năm sau thì mình sẽ giải cho bạn

9 tháng 10 2019

\(DK:x\in\left[\frac{7}{2};5\right]\)

PT\(\Leftrightarrow\left(\sqrt{x-3}-1\right)+\left(\sqrt{5-x}-1\right)+\left(\sqrt{2x-7}-1\right)-\left(x-4\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\frac{x-4}{\sqrt{x-3}+1}-\frac{x-4}{\sqrt{5-x}+1}+\frac{2\left(x-4\right)}{\sqrt{2x-7}+1}-\left(x-4\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\right)=0\)

Vi \(\frac{1}{\sqrt{x-3}+1}-\frac{1}{\sqrt{5-x}+1}+\frac{1}{\sqrt{2x-7}+1}-2x+1\ne0\)(voi moi \(x\in\left[\frac{7}{2};5\right]\)

\(\Rightarrow x=4\)

Vay nghiem cua PT la \(x=4\)

12 tháng 4 2020

Đáp án :0

20 tháng 3 2019

ĐKXĐ tự tìm\(\left\{{}\begin{matrix}\sqrt{x+3}=a\\\sqrt{x+7}=b\end{matrix}\right.\)

\(\Leftrightarrow ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)

\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\Rightarrow\left[{}\begin{matrix}a=2\\b=3\end{matrix}\right.\Rightarrow....\)

18 tháng 2 2016

bạn đặt t= cái phần sau dấu = ..........làm tiếp

18 tháng 2 2016

nếu thế thì có liên quan gì với phần trước không?

28 tháng 10 2023

a: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>=0\end{matrix}\right.\)

=>3<=x<=5

\(\sqrt{x-3}+\sqrt{5-x}=2\)

=>\(\sqrt{x-3}-1+\sqrt{5-x}-1=0\)

=>\(\dfrac{x-3-1}{\sqrt{x-3}+1}+\dfrac{5-x-1}{\sqrt{5-x}+1}=0\)

=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{x-3}+1}-\dfrac{1}{\sqrt{5-x}+1}\right)=0\)

=>x-4=0

=>x=4

18 tháng 9 2019

pt => \(x^2+10x+21=9\left(x+3\right)+4\left(x+7\right)+36-36\sqrt{x+3}-24\sqrt{x+7}\)

\(+12\sqrt{x^2+10x+21}\) ( bình phuownng hai vế)

=> \(x^2-3x-70=-36\sqrt{x+3}-24\sqrt{x+7}+12\left(3\sqrt{x+3}+2\sqrt{x+7}-6\right)\)

=> \(x^2-3x-70=-72\)

=> \(x^2-3x+2=0\)

=> \(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)( thỏa mãn điều kiện). 

Thay x=1 vào phương trình ban đầu ta có: \(4\sqrt{2}=6+4\sqrt{2}-6\)( đúng) . 

Thay x=2 vào phương trình ban đầu ta có: \(3\sqrt{5}=3\sqrt{5}+6-6\)( đúng)

Vậy x=1 và x=2 là ngiệm của phương trình ban đầu 

11 tháng 10 2019

ĐKXĐ : x lớn hơn hoặc bằng -3

Đặt \(\sqrt{x+3}\)=a, \(\sqrt{x+7}\)=b ( a,lớn hợn hoặc bằng 0, b lớn hơn 0)

=> \(\sqrt{x^2+10x+21}\)=ab

PT<=> ab=3a+2b-6

<=> ab-3a-2b+6=0

<=> a(b-3)-2(b-3)=o

<=> (a-2)(b-3)=0

<=>\(\orbr{\begin{cases}a-2=0\\b-3=0\end{cases}}\)

<=>\(\orbr{\begin{cases}a=2\\b=3\end{cases}}\)

TH1: a=2=> \(\sqrt{x+3}\)=2 <=> x+3=4<=> x=1 (t/m)

TH2: b=3 => \(\sqrt{x+7}\)=3 <=> x+7=9<=> x=2 (t/m)

Vậy phương trình có nghiệm x= 1;2

1. Giải phương trình:1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)5/ \(x^2-\left(m+1\right)x+2m-6=0\)6/ \(615+x^2=2^y\)2.a, Cho các số dương a,b thoả mãn \(a+b=2ab\).Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).Tính GTNN và GTLN của biểu thức \(P=x+y\).3. Cho hàm...
Đọc tiếp

1. Giải phương trình:

1/ \(\sqrt{x-4}+\sqrt{6-x}=x^2-10x+27\)

2/ \(\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}=8\)

3/ \(y^2-2y+3=\dfrac{6}{x^2+2x+4}\)

4/ \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)

5/ \(x^2-\left(m+1\right)x+2m-6=0\)

6/ \(615+x^2=2^y\)

2.

a, Cho các số dương a,b thoả mãn \(a+b=2ab\).

Tính GTLN của biểu thức \(Q=\dfrac{2}{\sqrt{a^2+b^2}}\).

b, Cho các số thực x,y thoả mãn \(x-\sqrt{y+6}=\sqrt{x+6}-y\).

Tính GTNN và GTLN của biểu thức \(P=x+y\).

3. Cho hàm số \(y=\left(m+3\right)x+2m-10\) có đồ thị đường thẳng (d), hàm số \(y=\left(m-4\right)x-2m-8\) có đồ thị đường thẳng (d2) (m là tham số, \(m\ne-3\) và \(m\ne4\)). Trên mặt phẳng toạ độ Oxy, (d) cắt trục hoành tại điểm A, (d2) cắt trục hoành tại điểm B, (d) cắt (d2) tại điểm C nằm trên trục tung. Chứng minh hệ thức \(\dfrac{OA}{BC}=\dfrac{OB}{AC}\).

4. Cho 2 đường tròn (O) và (I) cắt nhau tại dây AB, chứng minh rằng \(\Delta OAI=\Delta OBI\).

0
26 tháng 12 2017

ta có pt

<=>\(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}=6\)

đặt \(\sqrt{x+3}=a;\sqrt{x+7}=b\)

nên pt <=>\(ab=3a+2b-6\Leftrightarrow ab-3a-2b+6=0\)

\(\Leftrightarrow a\left(b-3\right)-2\left(b-3\right)=0\Leftrightarrow\left(a-2\right)\left(b-3\right)=0\)

đến đây thì dễ rồi

26 tháng 12 2017

biêu thức dài dài trong căn pt thành nhân tử là \(\sqrt{\left(x+3\right)\left(x+7\right)}\)

xong rùi bn pt thành nhân tử sẽ có dạng \(\left(\sqrt{x+3}-2\right)\left(\sqrt{x+7}-3\right)=0\)

đến day bn làm tiếp nhé