K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

nên BFEC là tứ giác nội tiếp

hay B,F,E,C cùng thuộc một đường tròn

Tâm I là trung điểm của BC

15 tháng 3 2022

lx

15 tháng 3 2022

lỗi 

a) Xét tứ giác AEHF có 

\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối

\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét tứ giác BFEC có 

\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)

\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC

Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

a) Xét tứ giác KEDC có 

\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối

\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Tâm của đường tròn này là trung điểm của KC

a: Sửa đề: BFEC

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: góc ABK=1/2*sđ cung AK=90 độ

góc BAK=góc BAD+góc DAK

góc DAC=góc DAK+góc CAK

mà góc BAD=góc CAK

nên góc BAK=góc DAC

Xét ΔABK vuông tại B và ΔADC vuông tại D có

góc BAK=góc DAC

=>ΔABK đồng dạng với ΔADC

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc AO

13 tháng 6 2016
 
Ta có hình vẽ như sau:

Xét tứ giác CEHD ta có:

Góc CEH = 900 (Vì BE là đường cao)

Góc CDH = 900 (Vì AD là đường cao)

=> góc CEH + góc CDH = 1800

Mà góc CEH và góc CDH là hai góc đối của tứ giác CEHD. Do đó CEHD là tứ giác nội tiếp.