a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2-2abcd+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b: \(\left(ac+bd\right)^2< =\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2-a^2c^2-a^2d^2-b^2c^2-b^2d^2< =0\)
\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2< =0\)
\(\Leftrightarrow\left(ad-bc\right)^2>=0\)(luôn đúng)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2adbc+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2d^2+b^2c^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b) \(\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^{^2}\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2-a^2c^2-2abcd-b^2d^2\)
\(=a^2d^2+b^2c^2-2abcd\)
\(=\left(ad\right)^2-2ad.bc+\left(bc\right)^2\)
\(=\left(ad-bc\right)^2\ge0\)
\(=\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
a: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)\)
b: Bạn ghi lại đề đi bạn
\(1.a,\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(b,\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ad-bc\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow-\left(ad-bc\right)^2\le0\left(luôn-đúng\right)\)
\(dấu"='\) \(xảy\) \(ra\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(c2:x+y=2\Rightarrow\left(x+y\right)^2=4\)
\(\Rightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge4\)
\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge4\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge4\Leftrightarrow x^2+y^2\ge2\)
\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=y=1\)
Câu 1:
a)Ta có (ac+bd)2+(ad-bc)2=(ac)2+2abcd+(bd)2+(ad)2-2abcd+(bc)2
=(ac)2+(bd)2+(ad)2+(bc)2
=a2(c2+d2)+b2(c2+d2)
=(a2+b2)(c2+d2) (đpcm)
b)Ta có (ac+bd)2 = (ac)2+2abcd+(bd)2
Lại có (a2+b2)(c2+d2) = (ac)2+(bd)2+(ad)2+(bc)2
Ta có (ac+bd)2 ≤ (a2+b2)(c2+d2)
<=>(a2+b2)(c2+d2) - (ac+bd)2 ≥ 0
<=>(ac)2+(bd)2+(ad)2+(bc)2-[(ac)2+2abcd+(bd)2]
<=>(ad)2 - 2abcd +(bc)2 ≥ 0
<=>(ad-bc)2 ≥ 0 (Luôn đúng) => đpcm
Câu 2:
Áp dụng BĐT Bunhiacôpxki, ta có (x+ y)2 ≤ (x2 + y2)(12 + 12) => 4 ≤ 2.S => 2 ≤ S
Dấu ''='' xảy ra <=> x=y=1
Vậy Min S=2 <=> x=y=1
ta có ĐPCM
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
<=> \(a^2c^2+2abcd+b^2d^2+a^2d^2+b^2c^2-2abcd=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
<=> \(a^2b^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+a^2d^2+b^2c^2+d^2b^2\) (luôn đúng )
b) ta có BĐT cần chứng minh \(\left(ax+by\right)^2< =\left(a^2+b^2\right)\left(x^2+y^2\right)\)
<=> \(a^2x^2+2axby+b^2y^2< =a^2x^2+a^2y^2+b^2x^2+b^2y^2\)
<=> \(0< =a^2y^2-2axby+b^2x^2\)
<=> \(\left(ay-bx\right)^2>=0\) (luôn đúng )
a) Cách lầy lội nhất khai triển hết ra :|
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(a^2c^2+b^2c^2\right)+\left(b^2d^2+a^2d^2\right)=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
a) \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
Biến đổi vế traias ta có:
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2=VP\)
=>đpcm
b)Có: \(\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2c^2+2abcd+b^2d^2\le a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(\Leftrightarrow-a^2d^2+2abcd-b^2c^2\le0\)
\(\Leftrightarrow-\left(a^2d^2-2abcd+b^2c^2\right)\le0\)
\(\Leftrightarrow-\left(ad-bc\right)^2\le0\), luôn luôn đúng
=>đpcm