K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)

\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)

\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)

\(A=2x^4y^4z^2\)

\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)

\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)

\(B=8x^7y^{y^8}z^6\)

13 tháng 2 2018

\(\left(x+1\right)\left(y-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy x = - 1 ; y = 2

4 tháng 9 2017

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).

Vậy  \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)

5 tháng 9 2017

thank Gia Hy

8 tháng 11 2015

a. Ta có:

\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c+a-b\right)+c^2\left(a-b\right)=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

và \(ab^2-ac^2-b^3+bc^2=a\left(b^2-c^2\right)-b\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)

Vậy, \(A=\frac{\left(a-b\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{c-a}{-c-b}=\frac{a-c}{c+b}\)

5 tháng 1 2018

Sửa lại đề nha: x+y+z=0

a)

Xét x+y+z=0

(x+y+z)2=02

x2+y2+z2+2xy+2yz+2zx=0

=> x2+y2+z2=-2xy-2yz-2zx

Xét \(\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

= \(\dfrac{x^2+y^2+z^2}{\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)}\)

=\(\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2zx+x^2}\)

=\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)(1)

Thay x2+y2+z2=-2xy-2yz-2zx vào (1)

=>\(\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2+x^2+y^2+z^2}\\=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2}\\ =\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}\\ =\dfrac{1}{3}\)

5 tháng 1 2018

b)

Xét x+y+z=0 ba lần:

- Lần 1:x+y+z=0

<=> x+y=0-z

<=>(x+y)2=(0-z)2

<=>x2+2xy+y2=z2

<=>x2+y2-z2=-2xy(1)

-Lần 2: x+y+z=0

<=> y+z=0-x

<=>(y+z)2=(0-x)2

<=>y2+2yz+z2=x2

<=>y2+z2-x2=-2yz(2)

-Lần 3: x+y+z=0

<=>z+x=0-y

<=>(z+x)2=(0-y)2

<=>z2+2zx+x2=y2

<=> z2+x2-y2=-2zx(3)

Thay (1),(2),(3) vào Q, ta có:

=>\(\dfrac{\left(x^2+y^2-z^2\right)\left(y^2+z^2-x^2\right)\left(z^2+x^2-y^2\right)}{16xyz}=\dfrac{\left(-2xy\right)\left(-2yz\right)\left(-2zx\right)}{16xyz}\\=\dfrac{\left(-2yz\right)\left(-2zx\right)}{-8z}\\ =\dfrac{y\left(-2zx\right)}{4}\\ =\dfrac{-2xyz}{4}\\ =-\dfrac{xyz}{2}\)

24 tháng 6 2017

Thiếu điều kiện xy = 1; x+y khác 0 nhá bn

Bài này tương tự câu 1 ở đây