Cho tam giác ABC có góc A =90 độ và AB=AC. Gọi K là trung điểm của BC
a) C/m: tam giác AKB= tam giác AKC và AK vuông góc BC
b) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. C/m: EC song song AK
vẽ hình hộ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AKB\) và \(\Delta AKC\) , có :
AK là cạnh chung
AB = AC ( gt )
BK = KC ( K là trung điểm của BC )
=> \(\Delta AKB=\Delta AKC\left(cgc\right)\)
Ta có :
+ Góc AKB = AKC ( \(\Delta AKB=\Delta AKC\) )
Mà góc AKB + AKC = 1800 ( 2 góc kề bù )
=> AKB = AKC= \(\frac{180^0}{2}\)= 900
Vậy AK \(\perp BC\)
b)
Ta có :
AK \(\perp BC\) ( Theo câu a )
EC \(\perp BC\) ( gt )
=> EC // AK
c) Tam giác BCE là tam giác vuông
GÓC BEC = 500
a,xet tam giac AKB va tam giac AKC co:
BK=CK(gt)
AK canh chung
AB=AC(gt)
=>tam giac AKB=tam giac AKC(c.c.c)
b,xet tam giacABC co:
AB=AC=>tam giac ABC can tai A
=>AK vua la duong trung truc, vua la duong cao
=>AK vuong goc voi BC
c,ta co: AK vuong goc voi BC, CE vuong goc voi BC
=>CK song song voi CE
Cho tam giác ABC vuông tại A có AB AC = . Gọi K là trung điểm của BC. 1) Chứng minh = AKB AKC . 2) Qua C vẽ đường thẳng vuông góc với BC cắt AB tại E . Tính số đo góc AEC.
a, Xét tam giác AKB và tam giác AKC có:
AK chung
AB = AC (gt)
KB = KC ( K là trung điểm BC )
=> Tam giác AKB = tam giác AKC (c.c.c)
AB = AC (gt) => Tam giác ABC cân tại A có AK là đường trung tuyến ( K là trung điểm BC )
=> AK đồng thời là đường cao => AK vuông góc với BC.
b, Ta có:
AK vuông góc với BC (cmt)
EC vuông góc với BC (gt)
=> AK song song với EC
c, Tam giác ABC cân tại A có AK vừa là đường trung tuyến vừa là đường cao => AK cũng là đường phân giác tam giác ABC
=> Góc BAK = góc CAK = 1/2 góc BAC = 1/2*90 độ(tam giác ABC vuông tại A) = 30 độ
Lại có: AK song song với EC (cmt) => Góc KAC = góc ECA ( so le trong)
Mà góc KAC = 30 độ => Góc ECA = 30 độ
Góc BAC + góc CAE = 180 độ ( kề bù)
=> Góc CAE = 180 độ - góc BAC = 180 độ - 90 độ = 90 độ
Xét tam giác ACE có : Góc AEC + góc ECA + góc CAE = 180 độ ( định lí tổng 3 góc trong tam giác)
Góc AEC + 30 độ + 90 độ = 180 độ
=> Góc AEC = 180 độ - 90 độ - 30 độ = 60 độ
Hay góc BEC = 60 độ
Vậy Góc BEC = 60 độ
a: Xét ΔAKB và ΔAKC có
AK chung
KB=KC
AB=AC
Do đó: ΔAKB=ΔAKC
Mình không vẽ hình được, bạn tự vẽ hình nhé!
a/ Xét tam giác AKB và tam giác AKC
Có: BK=CK (K là trung điểm BC)
AK là cạnh chung (GT)
AB=AC (GT)
Vậy tam giác AKB= tam giác AKC ( c.c.c) \(\Rightarrow\)Góc AKB= Góc AKC mà hai góc kề bù, vậy ^AKB=^AKC=90 độ
Vậy AK vuông góc với BC
c/ Có CE vuông góc với BC (GT) và AK cũng vuông góc với BC (CMT)
\(\Rightarrow\)CE song song với AK (cùng vuông góc với đường thẳng thứ 3 là BC)
a) Xét ΔAKB và ΔAKC có:
AB=AC(gt)
AK:cạnh chung
BK=CK(gt)
=> ΔAKB=ΔAKC(c.c.c)
=> \(\widehat{AKB}=\widehat{AKC}\)
Mà: \(\widehat{AKB}+\widehat{AKC}=180^o\)
=> \(\widehat{AKB}=\widehat{AKC}=90^o\)
=> \(AK\perp BC\)
b) Vì: \(EC\perp BC\left(gt\right)\)
Mad: \(AK\perp BC\left(cmt\right)\)
=> EC//AK
hi